3.30.71 e4x+e2e43x2x2x(4+e2e43x2x2(1+e43x2(4x212x4)))dx

Optimal. Leaf size=22 e(4+e2e43x2x2)x

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 24, normalized size of antiderivative = 1.09, number of steps used = 1, number of rules used = 1, integrand size = 67, number of rulesintegrand size = 0.015, Rules used = {6706} ee2e43x2x2x+4x

Antiderivative was successfully verified.

[In]

Int[E^(4*x + E^(2*E^(4 - 3*x^2)*x^2)*x)*(4 + E^(2*E^(4 - 3*x^2)*x^2)*(1 + E^(4 - 3*x^2)*(4*x^2 - 12*x^4))),x]

[Out]

E^(4*x + E^(2*E^(4 - 3*x^2)*x^2)*x)

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=e4x+e2e43x2x2x

________________________________________________________________________________________

Mathematica [A]  time = 1.68, size = 24, normalized size = 1.09 e4x+e2e43x2x2x

Antiderivative was successfully verified.

[In]

Integrate[E^(4*x + E^(2*E^(4 - 3*x^2)*x^2)*x)*(4 + E^(2*E^(4 - 3*x^2)*x^2)*(1 + E^(4 - 3*x^2)*(4*x^2 - 12*x^4)
)),x]

[Out]

E^(4*x + E^(2*E^(4 - 3*x^2)*x^2)*x)

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 21, normalized size = 0.95 e(xe(2x2e(3x2+4))+4x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-12*x^4+4*x^2)*exp(-3*x^2+4)+1)*exp(2*x^2*exp(-3*x^2+4))+4)*exp(x*exp(2*x^2*exp(-3*x^2+4))+4*x),x
, algorithm="fricas")

[Out]

e^(x*e^(2*x^2*e^(-3*x^2 + 4)) + 4*x)

________________________________________________________________________________________

giac [A]  time = 0.37, size = 21, normalized size = 0.95 e(xe(2x2e(3x2+4))+4x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-12*x^4+4*x^2)*exp(-3*x^2+4)+1)*exp(2*x^2*exp(-3*x^2+4))+4)*exp(x*exp(2*x^2*exp(-3*x^2+4))+4*x),x
, algorithm="giac")

[Out]

e^(x*e^(2*x^2*e^(-3*x^2 + 4)) + 4*x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 20, normalized size = 0.91




method result size



risch e(e2x2e3x2+4+4)x 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-12*x^4+4*x^2)*exp(-3*x^2+4)+1)*exp(2*x^2*exp(-3*x^2+4))+4)*exp(x*exp(2*x^2*exp(-3*x^2+4))+4*x),x,metho
d=_RETURNVERBOSE)

[Out]

exp((exp(2*x^2*exp(-3*x^2+4))+4)*x)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 21, normalized size = 0.95 e(xe(2x2e(3x2+4))+4x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-12*x^4+4*x^2)*exp(-3*x^2+4)+1)*exp(2*x^2*exp(-3*x^2+4))+4)*exp(x*exp(2*x^2*exp(-3*x^2+4))+4*x),x
, algorithm="maxima")

[Out]

e^(x*e^(2*x^2*e^(-3*x^2 + 4)) + 4*x)

________________________________________________________________________________________

mupad [B]  time = 1.90, size = 22, normalized size = 1.00 e4xexe2x2e4e3x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(4*x + x*exp(2*x^2*exp(4 - 3*x^2)))*(exp(2*x^2*exp(4 - 3*x^2))*(exp(4 - 3*x^2)*(4*x^2 - 12*x^4) + 1) +
4),x)

[Out]

exp(4*x)*exp(x*exp(2*x^2*exp(4)*exp(-3*x^2)))

________________________________________________________________________________________

sympy [A]  time = 5.96, size = 20, normalized size = 0.91 exe2x2e43x2+4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-12*x**4+4*x**2)*exp(-3*x**2+4)+1)*exp(2*x**2*exp(-3*x**2+4))+4)*exp(x*exp(2*x**2*exp(-3*x**2+4))
+4*x),x)

[Out]

exp(x*exp(2*x**2*exp(4 - 3*x**2)) + 4*x)

________________________________________________________________________________________