3.30.73
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 41, normalized size of antiderivative = 1.46,
number of steps used = 13, number of rules used = 7, integrand size = 51, = 0.137, Rules used
= {14, 2197, 2199, 2194, 2177, 2178, 2176}
Antiderivative was successfully verified.
[In]
Int[(509 + E^(2*x)*(2 - 4*x) + 63*x^2 + 2*x^3 - 6*x^4 + E^x*(-64 + 64*x - 4*x^2 - 4*x^3))/x^2,x]
[Out]
-509/x + (64*E^x)/x - (2*E^(2*x))/x + 63*x - 4*E^x*x + x^2 - 2*x^3
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2177
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !$UseGamma ===
True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2197
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[(g*u^(m + 1)*F^(c*v))/(b*c
*e*Log[F]), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 36, normalized size = 1.29
Antiderivative was successfully verified.
[In]
Integrate[(509 + E^(2*x)*(2 - 4*x) + 63*x^2 + 2*x^3 - 6*x^4 + E^x*(-64 + 64*x - 4*x^2 - 4*x^3))/x^2,x]
[Out]
(-509 - 2*E^(2*x) + 63*x^2 + x^3 - 2*x^4 - 4*E^x*(-16 + x^2))/x
________________________________________________________________________________________
fricas [A] time = 0.55, size = 37, normalized size = 1.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x+2)*exp(x)^2+(-4*x^3-4*x^2+64*x-64)*exp(x)-6*x^4+2*x^3+63*x^2+509)/x^2,x, algorithm="fricas")
[Out]
-(2*x^4 - x^3 - 63*x^2 + 4*(x^2 - 16)*e^x + 2*e^(2*x) + 509)/x
________________________________________________________________________________________
giac [A] time = 0.21, size = 39, normalized size = 1.39
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x+2)*exp(x)^2+(-4*x^3-4*x^2+64*x-64)*exp(x)-6*x^4+2*x^3+63*x^2+509)/x^2,x, algorithm="giac")
[Out]
-(2*x^4 - x^3 + 4*x^2*e^x - 63*x^2 + 2*e^(2*x) - 64*e^x + 509)/x
________________________________________________________________________________________
maple [A] time = 0.03, size = 37, normalized size = 1.32
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-4*x+2)*exp(x)^2+(-4*x^3-4*x^2+64*x-64)*exp(x)-6*x^4+2*x^3+63*x^2+509)/x^2,x,method=_RETURNVERBOSE)
[Out]
(-509+x^3+63*x^2-2*x^4-2*exp(x)^2-4*exp(x)*x^2+64*exp(x))/x
________________________________________________________________________________________
maxima [C] time = 0.53, size = 52, normalized size = 1.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x+2)*exp(x)^2+(-4*x^3-4*x^2+64*x-64)*exp(x)-6*x^4+2*x^3+63*x^2+509)/x^2,x, algorithm="maxima")
[Out]
-2*x^3 + x^2 - 4*(x - 1)*e^x + 63*x - 509/x - 4*Ei(2*x) + 64*Ei(x) - 4*e^x - 64*gamma(-1, -x) + 4*gamma(-1, -2
*x)
________________________________________________________________________________________
mupad [B] time = 0.08, size = 32, normalized size = 1.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(2*x)*(4*x - 2) - 63*x^2 - 2*x^3 + 6*x^4 + exp(x)*(4*x^2 - 64*x + 4*x^3 + 64) - 509)/x^2,x)
[Out]
x*(x - 4*exp(x) - 2*x^2 + 63) - (2*exp(2*x) - 64*exp(x) + 509)/x
________________________________________________________________________________________
sympy [A] time = 0.13, size = 37, normalized size = 1.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x+2)*exp(x)**2+(-4*x**3-4*x**2+64*x-64)*exp(x)-6*x**4+2*x**3+63*x**2+509)/x**2,x)
[Out]
-2*x**3 + x**2 + 63*x - 509/x + (-2*x*exp(2*x) + (-4*x**3 + 64*x)*exp(x))/x**2
________________________________________________________________________________________