3.30.73 509+e2x(24x)+63x2+2x36x4+ex(64+64x4x24x3)x2dx

Optimal. Leaf size=28 x2+3+xx22(16+ex+x2)2x

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 41, normalized size of antiderivative = 1.46, number of steps used = 13, number of rules used = 7, integrand size = 51, number of rulesintegrand size = 0.137, Rules used = {14, 2197, 2199, 2194, 2177, 2178, 2176} 2x3+x24exx+63x+64exx2e2xx509x

Antiderivative was successfully verified.

[In]

Int[(509 + E^(2*x)*(2 - 4*x) + 63*x^2 + 2*x^3 - 6*x^4 + E^x*(-64 + 64*x - 4*x^2 - 4*x^3))/x^2,x]

[Out]

-509/x + (64*E^x)/x - (2*E^(2*x))/x + 63*x - 4*E^x*x + x^2 - 2*x^3

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2197

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[(g*u^(m + 1)*F^(c*v))/(b*c
*e*Log[F]), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rubi steps

integral=(2e2x(1+2x)x24ex(1616x+x2+x3)x2+509+63x2+2x36x4x2)dx=(2e2x(1+2x)x2dx)4ex(1616x+x2+x3)x2dx+509+63x2+2x36x4x2dx=2e2xx4(ex+16exx216exx+exx)dx+(63+509x2+2x6x2)dx=509x2e2xx+63x+x22x34exdx4exxdx64exx2dx+64exxdx=4ex509x+64exx2e2xx+63x4exx+x22x3+64Ei(x)+4exdx64exxdx=509x+64exx2e2xx+63x4exx+x22x3

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 36, normalized size = 1.29 5092e2x+63x2+x32x44ex(16+x2)x

Antiderivative was successfully verified.

[In]

Integrate[(509 + E^(2*x)*(2 - 4*x) + 63*x^2 + 2*x^3 - 6*x^4 + E^x*(-64 + 64*x - 4*x^2 - 4*x^3))/x^2,x]

[Out]

(-509 - 2*E^(2*x) + 63*x^2 + x^3 - 2*x^4 - 4*E^x*(-16 + x^2))/x

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 37, normalized size = 1.32 2x4x363x2+4(x216)ex+2e(2x)+509x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x+2)*exp(x)^2+(-4*x^3-4*x^2+64*x-64)*exp(x)-6*x^4+2*x^3+63*x^2+509)/x^2,x, algorithm="fricas")

[Out]

-(2*x^4 - x^3 - 63*x^2 + 4*(x^2 - 16)*e^x + 2*e^(2*x) + 509)/x

________________________________________________________________________________________

giac [A]  time = 0.21, size = 39, normalized size = 1.39 2x4x3+4x2ex63x2+2e(2x)64ex+509x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x+2)*exp(x)^2+(-4*x^3-4*x^2+64*x-64)*exp(x)-6*x^4+2*x^3+63*x^2+509)/x^2,x, algorithm="giac")

[Out]

-(2*x^4 - x^3 + 4*x^2*e^x - 63*x^2 + 2*e^(2*x) - 64*e^x + 509)/x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 37, normalized size = 1.32




method result size



norman 509+x3+63x22x42e2x4exx2+64exx 37
default x2+63x509x2x3+64exx4exx2e2xx 39
risch x2+63x509x2x32e2xx4(x216)exx 39



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-4*x+2)*exp(x)^2+(-4*x^3-4*x^2+64*x-64)*exp(x)-6*x^4+2*x^3+63*x^2+509)/x^2,x,method=_RETURNVERBOSE)

[Out]

(-509+x^3+63*x^2-2*x^4-2*exp(x)^2-4*exp(x)*x^2+64*exp(x))/x

________________________________________________________________________________________

maxima [C]  time = 0.53, size = 52, normalized size = 1.86 2x3+x24(x1)ex+63x509x4Ei(2x)+64Ei(x)4ex64Γ(1,x)+4Γ(1,2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x+2)*exp(x)^2+(-4*x^3-4*x^2+64*x-64)*exp(x)-6*x^4+2*x^3+63*x^2+509)/x^2,x, algorithm="maxima")

[Out]

-2*x^3 + x^2 - 4*(x - 1)*e^x + 63*x - 509/x - 4*Ei(2*x) + 64*Ei(x) - 4*e^x - 64*gamma(-1, -x) + 4*gamma(-1, -2
*x)

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 32, normalized size = 1.14 x(x4ex2x2+63)2e2x64ex+509x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2*x)*(4*x - 2) - 63*x^2 - 2*x^3 + 6*x^4 + exp(x)*(4*x^2 - 64*x + 4*x^3 + 64) - 509)/x^2,x)

[Out]

x*(x - 4*exp(x) - 2*x^2 + 63) - (2*exp(2*x) - 64*exp(x) + 509)/x

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 37, normalized size = 1.32 2x3+x2+63x509x+2xe2x+(4x3+64x)exx2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x+2)*exp(x)**2+(-4*x**3-4*x**2+64*x-64)*exp(x)-6*x**4+2*x**3+63*x**2+509)/x**2,x)

[Out]

-2*x**3 + x**2 + 63*x - 509/x + (-2*x*exp(2*x) + (-4*x**3 + 64*x)*exp(x))/x**2

________________________________________________________________________________________