3.30.74 2048+4096x2+3072xlog(2)+ex(100x+75log(2))100x+75log(2)dx

Optimal. Leaf size=21 ex+51225(x2+log(4x3+log(2)))

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 22, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 3, integrand size = 35, number of rulesintegrand size = 0.086, Rules used = {6742, 2194, 698} 512x225+ex+51225log(4x+log(8))

Antiderivative was successfully verified.

[In]

Int[(2048 + 4096*x^2 + 3072*x*Log[2] + E^x*(100*x + 75*Log[2]))/(100*x + 75*Log[2]),x]

[Out]

E^x + (512*x^2)/25 + (512*Log[4*x + Log[8]])/25

Rule 698

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
 e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*
e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && IntegerQ[p] && (GtQ[p, 0] || (EqQ[a, 0] && IntegerQ[m]))

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(ex+1024(2+4x2+xlog(8))25(4x+log(8)))dx=1024252+4x2+xlog(8)4x+log(8)dx+exdx=ex+102425(x+24x+log(8))dx=ex+512x225+51225log(4x+log(8))

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 30, normalized size = 1.43 125(25ex+512x232log2(8)+512log(4x+log(8)))

Antiderivative was successfully verified.

[In]

Integrate[(2048 + 4096*x^2 + 3072*x*Log[2] + E^x*(100*x + 75*Log[2]))/(100*x + 75*Log[2]),x]

[Out]

(25*E^x + 512*x^2 - 32*Log[8]^2 + 512*Log[4*x + Log[8]])/25

________________________________________________________________________________________

fricas [A]  time = 1.11, size = 19, normalized size = 0.90 51225x2+ex+51225log(4x+3log(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((75*log(2)+100*x)*exp(x)+3072*x*log(2)+4096*x^2+2048)/(75*log(2)+100*x),x, algorithm="fricas")

[Out]

512/25*x^2 + e^x + 512/25*log(4*x + 3*log(2))

________________________________________________________________________________________

giac [A]  time = 0.28, size = 19, normalized size = 0.90 51225x2+ex+51225log(4x+3log(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((75*log(2)+100*x)*exp(x)+3072*x*log(2)+4096*x^2+2048)/(75*log(2)+100*x),x, algorithm="giac")

[Out]

512/25*x^2 + e^x + 512/25*log(4*x + 3*log(2))

________________________________________________________________________________________

maple [A]  time = 0.44, size = 20, normalized size = 0.95




method result size



default 512ln(3ln(2)+4x)25+512x225+ex 20
norman 512x225+ex+512ln(75ln(2)+100x)25 20
risch 512ln(3ln(2)+4x)25+512x225+ex 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((75*ln(2)+100*x)*exp(x)+3072*x*ln(2)+4096*x^2+2048)/(75*ln(2)+100*x),x,method=_RETURNVERBOSE)

[Out]

512/25*ln(3*ln(2)+4*x)+512/25*x^2+exp(x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 57625log(2)2log(4x+3log(2))38214E1(x34log(2))log(2)+51225x219225(3log(2)log(4x+3log(2))4x)log(2)76825xlog(2)12ex16x2+24xlog(2)+9log(2)2dxlog(2)+4xex4x+3log(2)+51225log(4x+3log(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((75*log(2)+100*x)*exp(x)+3072*x*log(2)+4096*x^2+2048)/(75*log(2)+100*x),x, algorithm="maxima")

[Out]

576/25*log(2)^2*log(4*x + 3*log(2)) - 3/8*2^(1/4)*exp_integral_e(1, -x - 3/4*log(2))*log(2) + 512/25*x^2 - 192
/25*(3*log(2)*log(4*x + 3*log(2)) - 4*x)*log(2) - 768/25*x*log(2) - 12*integrate(e^x/(16*x^2 + 24*x*log(2) + 9
*log(2)^2), x)*log(2) + 4*x*e^x/(4*x + 3*log(2)) + 512/25*log(4*x + 3*log(2))

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 17, normalized size = 0.81 512ln(4x+ln(8))25+ex+512x225

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*(100*x + 75*log(2)) + 3072*x*log(2) + 4096*x^2 + 2048)/(100*x + 75*log(2)),x)

[Out]

(512*log(4*x + log(8)))/25 + exp(x) + (512*x^2)/25

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 22, normalized size = 1.05 512x225+ex+512log(4x+3log(2))25

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((75*ln(2)+100*x)*exp(x)+3072*x*ln(2)+4096*x**2+2048)/(75*ln(2)+100*x),x)

[Out]

512*x**2/25 + exp(x) + 512*log(4*x + 3*log(2))/25

________________________________________________________________________________________