Optimal. Leaf size=31 \[ e^{e^{(x-\log (5))^2}-\frac {1}{3} x^2 \left (-e^{e^3}+x\right )^4} \]
________________________________________________________________________________________
Rubi [B] time = 7.64, antiderivative size = 75, normalized size of antiderivative = 2.42, number of steps used = 2, number of rules used = 2, integrand size = 153, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.013, Rules used = {12, 6706} \begin {gather*} \exp \left (\frac {1}{3} \left (-x^6+4 e^{e^3} x^5-6 e^{2 e^3} x^4+4 e^{3 e^3} x^3-e^{4 e^3} x^2+3\ 5^{-2 x} e^{x^2+\log ^2(5)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \exp \left (\frac {1}{3} \left (3 e^{x^2-2 x \log (5)+\log ^2(5)}-e^{4 e^3} x^2+4 e^{3 e^3} x^3-6 e^{2 e^3} x^4+4 e^{e^3} x^5-x^6\right )\right ) \left (-2 e^{4 e^3} x+12 e^{3 e^3} x^2-24 e^{2 e^3} x^3+20 e^{e^3} x^4-6 x^5+e^{x^2-2 x \log (5)+\log ^2(5)} (6 x-6 \log (5))\right ) \, dx\\ &=\exp \left (\frac {1}{3} \left (3\ 5^{-2 x} e^{x^2+\log ^2(5)}-e^{4 e^3} x^2+4 e^{3 e^3} x^3-6 e^{2 e^3} x^4+4 e^{e^3} x^5-x^6\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.27, size = 75, normalized size = 2.42 \begin {gather*} e^{\frac {1}{3} \left (3\ 5^{-2 x} e^{x^2+\log ^2(5)}-e^{4 e^3} x^2+4 e^{3 e^3} x^3-6 e^{2 e^3} x^4+4 e^{e^3} x^5-x^6\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 59, normalized size = 1.90 \begin {gather*} e^{\left (-\frac {1}{3} \, x^{6} + \frac {4}{3} \, x^{5} e^{\left (e^{3}\right )} - 2 \, x^{4} e^{\left (2 \, e^{3}\right )} + \frac {4}{3} \, x^{3} e^{\left (3 \, e^{3}\right )} - \frac {1}{3} \, x^{2} e^{\left (4 \, e^{3}\right )} + e^{\left (x^{2} - 2 \, x \log \relax (5) + \log \relax (5)^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.42, size = 59, normalized size = 1.90 \begin {gather*} e^{\left (-\frac {1}{3} \, x^{6} + \frac {4}{3} \, x^{5} e^{\left (e^{3}\right )} - 2 \, x^{4} e^{\left (2 \, e^{3}\right )} + \frac {4}{3} \, x^{3} e^{\left (3 \, e^{3}\right )} - \frac {1}{3} \, x^{2} e^{\left (4 \, e^{3}\right )} + e^{\left (x^{2} - 2 \, x \log \relax (5) + \log \relax (5)^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.16, size = 59, normalized size = 1.90
method | result | size |
risch | \({\mathrm e}^{\left (\frac {1}{25}\right )^{x} {\mathrm e}^{\ln \relax (5)^{2}+x^{2}}-\frac {x^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}}}{3}+\frac {4 x^{3} {\mathrm e}^{3 \,{\mathrm e}^{3}}}{3}-2 x^{4} {\mathrm e}^{2 \,{\mathrm e}^{3}}+\frac {4 x^{5} {\mathrm e}^{{\mathrm e}^{3}}}{3}-\frac {x^{6}}{3}}\) | \(59\) |
norman | \({\mathrm e}^{{\mathrm e}^{\ln \relax (5)^{2}-2 x \ln \relax (5)+x^{2}}-\frac {x^{2} {\mathrm e}^{4 \,{\mathrm e}^{3}}}{3}+\frac {4 x^{3} {\mathrm e}^{3 \,{\mathrm e}^{3}}}{3}-2 x^{4} {\mathrm e}^{2 \,{\mathrm e}^{3}}+\frac {4 x^{5} {\mathrm e}^{{\mathrm e}^{3}}}{3}-\frac {x^{6}}{3}}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.09, size = 59, normalized size = 1.90 \begin {gather*} e^{\left (-\frac {1}{3} \, x^{6} + \frac {4}{3} \, x^{5} e^{\left (e^{3}\right )} - 2 \, x^{4} e^{\left (2 \, e^{3}\right )} + \frac {4}{3} \, x^{3} e^{\left (3 \, e^{3}\right )} - \frac {1}{3} \, x^{2} e^{\left (4 \, e^{3}\right )} + e^{\left (x^{2} - 2 \, x \log \relax (5) + \log \relax (5)^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.22, size = 63, normalized size = 2.03 \begin {gather*} {\mathrm {e}}^{{\left (\frac {1}{25}\right )}^x\,{\mathrm {e}}^{{\ln \relax (5)}^2}\,{\mathrm {e}}^{x^2}}\,{\mathrm {e}}^{\frac {4\,x^5\,{\mathrm {e}}^{{\mathrm {e}}^3}}{3}}\,{\mathrm {e}}^{-\frac {x^6}{3}}\,{\mathrm {e}}^{-2\,x^4\,{\mathrm {e}}^{2\,{\mathrm {e}}^3}}\,{\mathrm {e}}^{-\frac {x^2\,{\mathrm {e}}^{4\,{\mathrm {e}}^3}}{3}}\,{\mathrm {e}}^{\frac {4\,x^3\,{\mathrm {e}}^{3\,{\mathrm {e}}^3}}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.55, size = 71, normalized size = 2.29 \begin {gather*} e^{- \frac {x^{6}}{3} + \frac {4 x^{5} e^{e^{3}}}{3} - 2 x^{4} e^{2 e^{3}} + \frac {4 x^{3} e^{3 e^{3}}}{3} - \frac {x^{2} e^{4 e^{3}}}{3} + e^{x^{2} - 2 x \log {\relax (5 )} + \log {\relax (5 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________