Optimal. Leaf size=22 \[ x^{-6/x} (-x+\log (9)) \log \left (-5+x^2+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^{-6/x} \left (-x^2-2 x^4+\left (x+2 x^3\right ) \log (9)+\left (-30 x+5 x^2+6 x^3-x^4+\left (30-6 x^2\right ) \log (9)+\left (36 x-x^2-6 x^3+\left (-36+6 x^2\right ) \log (9)\right ) \log (x)+(-6 x+6 \log (9)) \log ^2(x)\right ) \log \left (-5+x^2+\log (x)\right )\right )}{-5 x^2+x^4+x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^{-2-\frac {6}{x}} \left (x \left (1+2 x^2\right ) (x-\log (9))+\left (-5+x^2+\log (x)\right ) \left (-6 x+x^2+6 \log (9)+6 (x-\log (9)) \log (x)\right ) \log \left (-5+x^2+\log (x)\right )\right )}{5-x^2-\log (x)} \, dx\\ &=\int \left (-\frac {x^{-1-\frac {6}{x}} \left (1+2 x^2\right ) (x-\log (9))}{-5+x^2+\log (x)}-x^{-2-\frac {6}{x}} \left (-6 x+x^2+6 \log (9)+6 x \log (x)-6 \log (9) \log (x)\right ) \log \left (-5+x^2+\log (x)\right )\right ) \, dx\\ &=-\int \frac {x^{-1-\frac {6}{x}} \left (1+2 x^2\right ) (x-\log (9))}{-5+x^2+\log (x)} \, dx-\int x^{-2-\frac {6}{x}} \left (-6 x+x^2+6 \log (9)+6 x \log (x)-6 \log (9) \log (x)\right ) \log \left (-5+x^2+\log (x)\right ) \, dx\\ &=-\int \left (\frac {2 x^{2-\frac {6}{x}}}{-5+x^2+\log (x)}+\frac {x^{-6/x}}{-5+x^2+\log (x)}-\frac {x^{-1-\frac {6}{x}} \log (9)}{-5+x^2+\log (x)}-\frac {2 x^{1-\frac {6}{x}} \log (9)}{-5+x^2+\log (x)}\right ) \, dx-\int \left (-6 x^{-1-\frac {6}{x}} \log \left (-5+x^2+\log (x)\right )+x^{-6/x} \log \left (-5+x^2+\log (x)\right )+6 x^{-2-\frac {6}{x}} \log (9) \log \left (-5+x^2+\log (x)\right )+6 x^{-1-\frac {6}{x}} \log (x) \log \left (-5+x^2+\log (x)\right )-6 x^{-2-\frac {6}{x}} \log (9) \log (x) \log \left (-5+x^2+\log (x)\right )\right ) \, dx\\ &=-\left (2 \int \frac {x^{2-\frac {6}{x}}}{-5+x^2+\log (x)} \, dx\right )+6 \int x^{-1-\frac {6}{x}} \log \left (-5+x^2+\log (x)\right ) \, dx-6 \int x^{-1-\frac {6}{x}} \log (x) \log \left (-5+x^2+\log (x)\right ) \, dx+\log (9) \int \frac {x^{-1-\frac {6}{x}}}{-5+x^2+\log (x)} \, dx+(2 \log (9)) \int \frac {x^{1-\frac {6}{x}}}{-5+x^2+\log (x)} \, dx-(6 \log (9)) \int x^{-2-\frac {6}{x}} \log \left (-5+x^2+\log (x)\right ) \, dx+(6 \log (9)) \int x^{-2-\frac {6}{x}} \log (x) \log \left (-5+x^2+\log (x)\right ) \, dx-\int \frac {x^{-6/x}}{-5+x^2+\log (x)} \, dx-\int x^{-6/x} \log \left (-5+x^2+\log (x)\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 23, normalized size = 1.05 \begin {gather*} -x^{-6/x} (x-\log (9)) \log \left (-5+x^2+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 25, normalized size = 1.14 \begin {gather*} -\frac {{\left (x - 2 \, \log \relax (3)\right )} \log \left (x^{2} + \log \relax (x) - 5\right )}{x^{\frac {6}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.94, size = 42, normalized size = 1.91 \begin {gather*} -\frac {x \log \left (x^{2} + \log \relax (x) - 5\right )}{x^{\frac {6}{x}}} + \frac {2 \, \log \relax (3) \log \left (x^{2} + \log \relax (x) - 5\right )}{x^{\frac {6}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.23
method | result | size |
risch | \(\ln \left (\ln \relax (x )+x^{2}-5\right ) x^{-\frac {6}{x}} \left (2 \ln \relax (3)-x \right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 25, normalized size = 1.14 \begin {gather*} -\frac {{\left (x - 2 \, \log \relax (3)\right )} \log \left (x^{2} + \log \relax (x) - 5\right )}{x^{\frac {6}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.10, size = 25, normalized size = 1.14 \begin {gather*} -\frac {\ln \left (\ln \relax (x)+x^2-5\right )\,\left (x-\ln \relax (9)\right )}{x^{6/x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 26.39, size = 34, normalized size = 1.55 \begin {gather*} \left (- x \log {\left (x^{2} + \log {\relax (x )} - 5 \right )} + 2 \log {\relax (3 )} \log {\left (x^{2} + \log {\relax (x )} - 5 \right )}\right ) e^{- \frac {6 \log {\relax (x )}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________