Optimal. Leaf size=27 \[ \frac {e^{-3+\frac {4}{-2-\frac {4}{x}}+x}}{(4-x) x} \]
________________________________________________________________________________________
Rubi [F] time = 2.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right ) \left (16+8 x-20 x^2-2 x^3+x^4\right )}{-16 x-12 x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right ) \left (16+8 x-20 x^2-2 x^3+x^4\right )}{x \left (-16-12 x+x^3\right )} \, dx\\ &=\int \left (\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )+\frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{4-x}-\frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{x}-\frac {4 \exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{(2+x)^2}\right ) \, dx\\ &=-\left (4 \int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{(2+x)^2} \, dx\right )+\int \exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right ) \, dx+\int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{4-x} \, dx-\int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{x} \, dx\\ &=-\left (4 \int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{(2+x)^2} \, dx\right )+\int \exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right ) \, dx-\int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{x} \, dx+\int \frac {e^{\frac {-6-3 x+x^2}{2+x}}}{(4-x)^2 x} \, dx\\ &=-\left (4 \int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{(2+x)^2} \, dx\right )+\int \exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right ) \, dx+\int \left (\frac {e^{\frac {-6-3 x+x^2}{2+x}}}{4 (-4+x)^2}-\frac {e^{\frac {-6-3 x+x^2}{2+x}}}{16 (-4+x)}+\frac {e^{\frac {-6-3 x+x^2}{2+x}}}{16 x}\right ) \, dx-\int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{x} \, dx\\ &=-\left (\frac {1}{16} \int \frac {e^{\frac {-6-3 x+x^2}{2+x}}}{-4+x} \, dx\right )+\frac {1}{16} \int \frac {e^{\frac {-6-3 x+x^2}{2+x}}}{x} \, dx+\frac {1}{4} \int \frac {e^{\frac {-6-3 x+x^2}{2+x}}}{(-4+x)^2} \, dx-4 \int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{(2+x)^2} \, dx+\int \exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right ) \, dx-\int \frac {\exp \left (\frac {-6-3 x+x^2+(-2-x) \log \left (4 x-x^2\right )}{2+x}\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 22, normalized size = 0.81 \begin {gather*} -\frac {e^{-5+x+\frac {4}{2+x}}}{(-4+x) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 30, normalized size = 1.11 \begin {gather*} e^{\left (\frac {x^{2} - {\left (x + 2\right )} \log \left (-x^{2} + 4 \, x\right ) - 3 \, x - 6}{x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 61, normalized size = 2.26 \begin {gather*} e^{\left (\frac {x^{2}}{x + 2} - \frac {x \log \left (-x^{2} + 4 \, x\right )}{x + 2} - \frac {3 \, x}{x + 2} - \frac {2 \, \log \left (-x^{2} + 4 \, x\right )}{x + 2} - \frac {6}{x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 41, normalized size = 1.52
method | result | size |
risch | \({\mathrm e}^{\frac {-\ln \left (-x^{2}+4 x \right ) x +x^{2}-2 \ln \left (-x^{2}+4 x \right )-3 x -6}{2+x}}\) | \(41\) |
gosper | \({\mathrm e}^{-\frac {\ln \left (-x^{2}+4 x \right ) x -x^{2}+2 \ln \left (-x^{2}+4 x \right )+3 x +6}{2+x}}\) | \(43\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {\left (-x -2\right ) \ln \left (-x^{2}+4 x \right )+x^{2}-3 x -6}{2+x}}+2 \,{\mathrm e}^{\frac {\left (-x -2\right ) \ln \left (-x^{2}+4 x \right )+x^{2}-3 x -6}{2+x}}}{2+x}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 26, normalized size = 0.96 \begin {gather*} -\frac {e^{\left (x + \frac {4}{x + 2}\right )}}{x^{2} e^{5} - 4 \, x e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.08, size = 39, normalized size = 1.44 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {3\,x}{x+2}}\,{\mathrm {e}}^{\frac {x^2}{x+2}}\,{\mathrm {e}}^{-\frac {6}{x+2}}}{4\,x-x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 26, normalized size = 0.96 \begin {gather*} e^{\frac {x^{2} - 3 x + \left (- x - 2\right ) \log {\left (- x^{2} + 4 x \right )} - 6}{x + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________