Optimal. Leaf size=25 \[ -\frac {e^{-2 x} (2+x)}{\log (x)}+\frac {4}{e^x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 5.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} (2+x)+\left (e^x (4+2 x)+e^{2 x} \left (3 x+2 x^2\right )\right ) \log (x)+\left (2-4 e^{2 x}+x-4 e^{3 x} x+e^x \left (6 x+4 x^2\right )\right ) \log ^2(x)+\left (3 x+2 x^2\right ) \log ^3(x)}{e^{4 x} x \log ^2(x)+2 e^{3 x} x \log ^3(x)+e^{2 x} x \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2 x} \left (e^{2 x} (2+x)+\left (e^x (4+2 x)+e^{2 x} \left (3 x+2 x^2\right )\right ) \log (x)+\left (2-4 e^{2 x}+x-4 e^{3 x} x+e^x \left (6 x+4 x^2\right )\right ) \log ^2(x)+\left (3 x+2 x^2\right ) \log ^3(x)\right )}{x \log ^2(x) \left (e^x+\log (x)\right )^2} \, dx\\ &=\int \left (-4 e^{-x}+\frac {4 e^{-2 x} \log ^2(x) (-1+x \log (x))}{x \left (e^x+\log (x)\right )^2}-\frac {4 e^{-2 x} \log (x) (-2+3 x \log (x))}{x \left (e^x+\log (x)\right )}+\frac {e^{-2 x} \left (2+x+3 x \log (x)+2 x^2 \log (x)-4 \log ^2(x)+8 x \log ^3(x)\right )}{x \log ^2(x)}\right ) \, dx\\ &=-\left (4 \int e^{-x} \, dx\right )+4 \int \frac {e^{-2 x} \log ^2(x) (-1+x \log (x))}{x \left (e^x+\log (x)\right )^2} \, dx-4 \int \frac {e^{-2 x} \log (x) (-2+3 x \log (x))}{x \left (e^x+\log (x)\right )} \, dx+\int \frac {e^{-2 x} \left (2+x+3 x \log (x)+2 x^2 \log (x)-4 \log ^2(x)+8 x \log ^3(x)\right )}{x \log ^2(x)} \, dx\\ &=4 e^{-x}+4 \int \left (-\frac {e^{-2 x} \log ^2(x)}{x \left (e^x+\log (x)\right )^2}+\frac {e^{-2 x} \log ^3(x)}{\left (e^x+\log (x)\right )^2}\right ) \, dx-4 \int \left (-\frac {2 e^{-2 x} \log (x)}{x \left (e^x+\log (x)\right )}+\frac {3 e^{-2 x} \log ^2(x)}{e^x+\log (x)}\right ) \, dx+\int \left (-\frac {4 e^{-2 x}}{x}+\frac {e^{-2 x} (2+x)}{x \log ^2(x)}+\frac {e^{-2 x} (3+2 x)}{\log (x)}+8 e^{-2 x} \log (x)\right ) \, dx\\ &=4 e^{-x}-4 \int \frac {e^{-2 x}}{x} \, dx-4 \int \frac {e^{-2 x} \log ^2(x)}{x \left (e^x+\log (x)\right )^2} \, dx+4 \int \frac {e^{-2 x} \log ^3(x)}{\left (e^x+\log (x)\right )^2} \, dx+8 \int e^{-2 x} \log (x) \, dx+8 \int \frac {e^{-2 x} \log (x)}{x \left (e^x+\log (x)\right )} \, dx-12 \int \frac {e^{-2 x} \log ^2(x)}{e^x+\log (x)} \, dx+\int \frac {e^{-2 x} (2+x)}{x \log ^2(x)} \, dx+\int \frac {e^{-2 x} (3+2 x)}{\log (x)} \, dx\\ &=4 e^{-x}-4 \text {Ei}(-2 x)-4 e^{-2 x} \log (x)-4 \int \frac {e^{-2 x} \log ^2(x)}{x \left (e^x+\log (x)\right )^2} \, dx+4 \int \frac {e^{-2 x} \log ^3(x)}{\left (e^x+\log (x)\right )^2} \, dx-8 \int -\frac {e^{-2 x}}{2 x} \, dx+8 \int \frac {e^{-2 x} \log (x)}{x \left (e^x+\log (x)\right )} \, dx-12 \int \frac {e^{-2 x} \log ^2(x)}{e^x+\log (x)} \, dx+\int \left (\frac {e^{-2 x}}{\log ^2(x)}+\frac {2 e^{-2 x}}{x \log ^2(x)}\right ) \, dx+\int \left (\frac {3 e^{-2 x}}{\log (x)}+\frac {2 e^{-2 x} x}{\log (x)}\right ) \, dx\\ &=4 e^{-x}-4 \text {Ei}(-2 x)-4 e^{-2 x} \log (x)+2 \int \frac {e^{-2 x}}{x \log ^2(x)} \, dx+2 \int \frac {e^{-2 x} x}{\log (x)} \, dx+3 \int \frac {e^{-2 x}}{\log (x)} \, dx+4 \int \frac {e^{-2 x}}{x} \, dx-4 \int \frac {e^{-2 x} \log ^2(x)}{x \left (e^x+\log (x)\right )^2} \, dx+4 \int \frac {e^{-2 x} \log ^3(x)}{\left (e^x+\log (x)\right )^2} \, dx+8 \int \frac {e^{-2 x} \log (x)}{x \left (e^x+\log (x)\right )} \, dx-12 \int \frac {e^{-2 x} \log ^2(x)}{e^x+\log (x)} \, dx+\int \frac {e^{-2 x}}{\log ^2(x)} \, dx\\ &=4 e^{-x}-4 e^{-2 x} \log (x)+2 \int \frac {e^{-2 x}}{x \log ^2(x)} \, dx+2 \int \frac {e^{-2 x} x}{\log (x)} \, dx+3 \int \frac {e^{-2 x}}{\log (x)} \, dx-4 \int \frac {e^{-2 x} \log ^2(x)}{x \left (e^x+\log (x)\right )^2} \, dx+4 \int \frac {e^{-2 x} \log ^3(x)}{\left (e^x+\log (x)\right )^2} \, dx+8 \int \frac {e^{-2 x} \log (x)}{x \left (e^x+\log (x)\right )} \, dx-12 \int \frac {e^{-2 x} \log ^2(x)}{e^x+\log (x)} \, dx+\int \frac {e^{-2 x}}{\log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 25, normalized size = 1.00 \begin {gather*} -\frac {e^{-2 x} (2+x)}{\log (x)}+\frac {4}{e^x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 40, normalized size = 1.60 \begin {gather*} -\frac {{\left (x + 2\right )} e^{x} + {\left (x - 4 \, e^{\left (2 \, x\right )} + 2\right )} \log \relax (x)}{e^{\left (2 \, x\right )} \log \relax (x)^{2} + e^{\left (3 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 46, normalized size = 1.84 \begin {gather*} -\frac {x e^{x} + x \log \relax (x) - 4 \, e^{\left (2 \, x\right )} \log \relax (x) + 2 \, e^{x} + 2 \, \log \relax (x)}{e^{\left (2 \, x\right )} \log \relax (x)^{2} + e^{\left (3 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 43, normalized size = 1.72
method | result | size |
risch | \(-\frac {\left (-4 \,{\mathrm e}^{2 x} \ln \relax (x )+{\mathrm e}^{x} x +x \ln \relax (x )+2 \,{\mathrm e}^{x}+2 \ln \relax (x )\right ) {\mathrm e}^{-2 x}}{\left (\ln \relax (x )+{\mathrm e}^{x}\right ) \ln \relax (x )}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.90, size = 42, normalized size = 1.68 \begin {gather*} -\frac {{\mathrm {e}}^{-2\,x}\,\left (2\,{\mathrm {e}}^x+2\,\ln \relax (x)-4\,{\mathrm {e}}^{2\,x}\,\ln \relax (x)+x\,{\mathrm {e}}^x+x\,\ln \relax (x)\right )}{\ln \relax (x)\,\left ({\mathrm {e}}^x+\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 20, normalized size = 0.80 \begin {gather*} \frac {\left (- x - 2\right ) e^{- 2 x}}{\log {\relax (x )}} + \frac {4}{e^{x} + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________