Optimal. Leaf size=25 \[ e^3+\frac {x^2}{e^6 \left (-4+e^5\right )^2 (-8-x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 22, normalized size of antiderivative = 0.88, number of steps used = 5, number of rules used = 5, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {1593, 1983, 27, 12, 74} \begin {gather*} -\frac {x^2}{e^6 \left (4-e^5\right )^2 (x+8)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 74
Rule 1593
Rule 1983
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-16-x) x}{e^{11} \left (-512-128 x-8 x^2\right )+e^{16} \left (64+16 x+x^2\right )+e^6 \left (1024+256 x+16 x^2\right )} \, dx\\ &=\int \frac {(-16-x) x}{64 e^6 \left (4-e^5\right )^2+16 e^6 \left (4-e^5\right )^2 x+e^6 \left (4-e^5\right )^2 x^2} \, dx\\ &=\int \frac {(-16-x) x}{e^6 \left (-4+e^5\right )^2 (8+x)^2} \, dx\\ &=\frac {\int \frac {(-16-x) x}{(8+x)^2} \, dx}{e^6 \left (4-e^5\right )^2}\\ &=-\frac {x^2}{e^6 \left (4-e^5\right )^2 (8+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 0.84 \begin {gather*} -\frac {x+\frac {64}{8+x}}{e^6 \left (-4+e^5\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 33, normalized size = 1.32 \begin {gather*} -\frac {x^{2} + 8 \, x + 64}{{\left (x + 8\right )} e^{16} - 8 \, {\left (x + 8\right )} e^{11} + 16 \, {\left (x + 8\right )} e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 37, normalized size = 1.48 \begin {gather*} -\frac {x}{e^{16} - 8 \, e^{11} + 16 \, e^{6}} - \frac {64}{{\left (x + 8\right )} {\left (e^{16} - 8 \, e^{11} + 16 \, e^{6}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.52, size = 21, normalized size = 0.84
method | result | size |
norman | \(-\frac {{\mathrm e}^{-6} x^{2}}{\left ({\mathrm e}^{5}-4\right )^{2} \left (x +8\right )}\) | \(21\) |
default | \(\frac {{\mathrm e}^{-6} \left (-x -\frac {64}{x +8}\right )}{-8 \,{\mathrm e}^{5}+{\mathrm e}^{10}+16}\) | \(29\) |
gosper | \(-\frac {x^{2} {\mathrm e}^{-6}}{x \,{\mathrm e}^{10}+8 \,{\mathrm e}^{10}-8 x \,{\mathrm e}^{5}-64 \,{\mathrm e}^{5}+16 x +128}\) | \(38\) |
meijerg | \(-\frac {8 \left (\frac {x \left (\frac {3 x}{8}+6\right )}{24+3 x}-2 \ln \left (1+\frac {x}{8}\right )\right )}{{\mathrm e}^{16}-8 \,{\mathrm e}^{11}+16 \,{\mathrm e}^{6}}-\frac {16 \left (-\frac {x}{8 \left (1+\frac {x}{8}\right )}+\ln \left (1+\frac {x}{8}\right )\right )}{{\mathrm e}^{16}-8 \,{\mathrm e}^{11}+16 \,{\mathrm e}^{6}}\) | \(73\) |
risch | \(-\frac {x}{{\mathrm e}^{16}-8 \,{\mathrm e}^{11}+16 \,{\mathrm e}^{6}}-\frac {64 \,{\mathrm e}^{-6} {\mathrm e}^{16}}{\left ({\mathrm e}^{16}-8 \,{\mathrm e}^{11}+16 \,{\mathrm e}^{6}\right ) \left (x \,{\mathrm e}^{10}+8 \,{\mathrm e}^{10}-8 x \,{\mathrm e}^{5}-64 \,{\mathrm e}^{5}+16 x +128\right )}+\frac {512 \,{\mathrm e}^{-6} {\mathrm e}^{11}}{\left ({\mathrm e}^{16}-8 \,{\mathrm e}^{11}+16 \,{\mathrm e}^{6}\right ) \left (x \,{\mathrm e}^{10}+8 \,{\mathrm e}^{10}-8 x \,{\mathrm e}^{5}-64 \,{\mathrm e}^{5}+16 x +128\right )}-\frac {1024 \,{\mathrm e}^{-6} {\mathrm e}^{6}}{\left ({\mathrm e}^{16}-8 \,{\mathrm e}^{11}+16 \,{\mathrm e}^{6}\right ) \left (x \,{\mathrm e}^{10}+8 \,{\mathrm e}^{10}-8 x \,{\mathrm e}^{5}-64 \,{\mathrm e}^{5}+16 x +128\right )}\) | \(147\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 47, normalized size = 1.88 \begin {gather*} -\frac {x}{e^{16} - 8 \, e^{11} + 16 \, e^{6}} - \frac {64}{x {\left (e^{16} - 8 \, e^{11} + 16 \, e^{6}\right )} + 8 \, e^{16} - 64 \, e^{11} + 128 \, e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.80, size = 23, normalized size = 0.92 \begin {gather*} -\frac {{\mathrm {e}}^{-6}\,\left (x^2+8\,x+64\right )}{{\left ({\mathrm {e}}^5-4\right )}^2\,\left (x+8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.29, size = 48, normalized size = 1.92 \begin {gather*} - \frac {x}{- 8 e^{11} + 16 e^{6} + e^{16}} - \frac {64}{x \left (- 8 e^{11} + 16 e^{6} + e^{16}\right ) - 64 e^{11} + 128 e^{6} + 8 e^{16}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________