Optimal. Leaf size=17 \[ 5+\log \left (\left (-\frac {2}{3}+e+\frac {x}{2}\right ) x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6, 631} \begin {gather*} \log (2 (2-3 e)-3 x)+2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 631
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-8+12 e+9 x}{(-4+6 e) x+3 x^2} \, dx\\ &=\int \left (\frac {2}{x}+\frac {3}{-4+6 e+3 x}\right ) \, dx\\ &=\log (2 (2-3 e)-3 x)+2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 14, normalized size = 0.82 \begin {gather*} \log (4-6 e-3 x)+2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 15, normalized size = 0.88 \begin {gather*} \log \left (3 \, x + 6 \, e - 4\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 17, normalized size = 1.00 \begin {gather*} \log \left ({\left | 3 \, x + 6 \, e - 4 \right |}\right ) + 2 \, \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 16, normalized size = 0.94
method | result | size |
default | \(2 \ln \relax (x )+\ln \left (6 \,{\mathrm e}+3 x -4\right )\) | \(16\) |
norman | \(2 \ln \relax (x )+\ln \left (6 \,{\mathrm e}+3 x -4\right )\) | \(16\) |
risch | \(2 \ln \relax (x )+\ln \left (6 \,{\mathrm e}+3 x -4\right )\) | \(16\) |
meijerg | \(\frac {18 \,{\mathrm e} \left (2 \,{\mathrm e}-\frac {4}{3}\right ) \left (\ln \relax (x )+\ln \relax (3)-\ln \relax (2)-\ln \left (3 \,{\mathrm e}-2\right )-\ln \left (1+\frac {3 x}{2 \left (3 \,{\mathrm e}-2\right )}\right )\right )}{\left (3 \,{\mathrm e}-2\right ) \left (6 \,{\mathrm e}-4\right )}+\frac {9 \left (2 \,{\mathrm e}-\frac {4}{3}\right ) \ln \left (1+\frac {3 x}{2 \left (3 \,{\mathrm e}-2\right )}\right )}{6 \,{\mathrm e}-4}-\frac {12 \left (2 \,{\mathrm e}-\frac {4}{3}\right ) \left (\ln \relax (x )+\ln \relax (3)-\ln \relax (2)-\ln \left (3 \,{\mathrm e}-2\right )-\ln \left (1+\frac {3 x}{2 \left (3 \,{\mathrm e}-2\right )}\right )\right )}{\left (6 \,{\mathrm e}-4\right ) \left (3 \,{\mathrm e}-2\right )}\) | \(150\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 15, normalized size = 0.88 \begin {gather*} \log \left (3 \, x + 6 \, e - 4\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.83, size = 13, normalized size = 0.76 \begin {gather*} \ln \left (x+2\,\mathrm {e}-\frac {4}{3}\right )+2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 15, normalized size = 0.88 \begin {gather*} 2 \log {\relax (x )} + \log {\left (x - \frac {4}{3} + 2 e \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________