Optimal. Leaf size=32 \[ \log \left (x \left (x-\frac {x^2}{e^4}\right )^2-\frac {x}{-x+4 (-3+2 x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 56, normalized size of antiderivative = 1.75, number of steps used = 3, number of rules used = 2, integrand size = 124, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {2074, 1587} \begin {gather*} \log \left (-7 x^5+2 \left (6+7 e^4\right ) x^4-e^4 \left (24+7 e^4\right ) x^3+12 e^8 x^2+e^8\right )-\log (12-7 x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}-\frac {7}{-12+7 x}+\frac {x \left (24 e^8-3 e^4 \left (24+7 e^4\right ) x+8 \left (6+7 e^4\right ) x^2-35 x^3\right )}{e^8+12 e^8 x^2-24 e^4 \left (1+\frac {7 e^4}{24}\right ) x^3+12 \left (1+\frac {7 e^4}{6}\right ) x^4-7 x^5}\right ) \, dx\\ &=-\log (12-7 x)+\log (x)+\int \frac {x \left (24 e^8-3 e^4 \left (24+7 e^4\right ) x+8 \left (6+7 e^4\right ) x^2-35 x^3\right )}{e^8+12 e^8 x^2-24 e^4 \left (1+\frac {7 e^4}{24}\right ) x^3+12 \left (1+\frac {7 e^4}{6}\right ) x^4-7 x^5} \, dx\\ &=-\log (12-7 x)+\log (x)+\log \left (e^8+12 e^8 x^2-e^4 \left (24+7 e^4\right ) x^3+2 \left (6+7 e^4\right ) x^4-7 x^5\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.32, size = 253, normalized size = 7.91 \begin {gather*} -\log (12-7 x)+\log (x)+12 \text {RootSum}\left [-e^8-12 e^8 \text {$\#$1}^2+24 e^4 \text {$\#$1}^3+7 e^8 \text {$\#$1}^3-12 \text {$\#$1}^4-14 e^4 \text {$\#$1}^4+7 \text {$\#$1}^5\&,\frac {e^4 \log (x-\text {$\#$1})-\log (x-\text {$\#$1}) \text {$\#$1}}{-24 e^4+48 \text {$\#$1}+21 e^4 \text {$\#$1}-35 \text {$\#$1}^2}\&\right ]+\text {RootSum}\left [-e^8-12 e^8 \text {$\#$1}^2+24 e^4 \text {$\#$1}^3+7 e^8 \text {$\#$1}^3-12 \text {$\#$1}^4-14 e^4 \text {$\#$1}^4+7 \text {$\#$1}^5\&,\frac {-36 e^4 \log (x-\text {$\#$1})+60 \log (x-\text {$\#$1}) \text {$\#$1}+21 e^4 \log (x-\text {$\#$1}) \text {$\#$1}-35 \log (x-\text {$\#$1}) \text {$\#$1}^2}{-24 e^4+48 \text {$\#$1}+21 e^4 \text {$\#$1}-35 \text {$\#$1}^2}\&\right ] \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 53, normalized size = 1.66 \begin {gather*} \log \left (7 \, x^{6} - 12 \, x^{5} + {\left (7 \, x^{4} - 12 \, x^{3} - x\right )} e^{8} - 2 \, {\left (7 \, x^{5} - 12 \, x^{4}\right )} e^{4}\right ) - \log \left (7 \, x - 12\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.74, size = 58, normalized size = 1.81 \begin {gather*} \log \left ({\left | 7 \, x^{5} - 14 \, x^{4} e^{4} - 12 \, x^{4} + 7 \, x^{3} e^{8} + 24 \, x^{3} e^{4} - 12 \, x^{2} e^{8} - e^{8} \right |}\right ) - \log \left ({\left | 7 \, x - 12 \right |}\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 52, normalized size = 1.62
method | result | size |
risch | \(-\ln \left (-7 x +12\right )+\ln \left (7 x^{6}+\left (-14 \,{\mathrm e}^{4}-12\right ) x^{5}+\left (7 \,{\mathrm e}^{8}+24 \,{\mathrm e}^{4}\right ) x^{4}-12 \,{\mathrm e}^{8} x^{3}-x \,{\mathrm e}^{8}\right )\) | \(52\) |
default | \(\ln \left (-14 x^{4} {\mathrm e}^{4}+7 x^{5}+7 \,{\mathrm e}^{8} x^{3}+24 x^{3} {\mathrm e}^{4}-12 x^{4}-12 x^{2} {\mathrm e}^{8}-{\mathrm e}^{8}\right )+\ln \relax (x )-\ln \left (7 x -12\right )\) | \(56\) |
norman | \(\ln \left (-14 x^{4} {\mathrm e}^{4}+7 x^{5}+7 \,{\mathrm e}^{8} x^{3}+24 x^{3} {\mathrm e}^{4}-12 x^{4}-12 x^{2} {\mathrm e}^{8}-{\mathrm e}^{8}\right )+\ln \relax (x )-\ln \left (7 x -12\right )\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 53, normalized size = 1.66 \begin {gather*} \log \left (7 \, x^{5} - 2 \, x^{4} {\left (7 \, e^{4} + 6\right )} + x^{3} {\left (7 \, e^{8} + 24 \, e^{4}\right )} - 12 \, x^{2} e^{8} - e^{8}\right ) - \log \left (7 \, x - 12\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.32, size = 49, normalized size = 1.53 \begin {gather*} \ln \left (\frac {24\,x^4\,{\mathrm {e}}^4}{7}-\frac {x\,{\mathrm {e}}^8}{7}-2\,x^5\,{\mathrm {e}}^4-\frac {12\,x^3\,{\mathrm {e}}^8}{7}+x^4\,{\mathrm {e}}^8-\frac {12\,x^5}{7}+x^6\right )-\ln \left (x-\frac {12}{7}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.84, size = 54, normalized size = 1.69 \begin {gather*} - \log {\left (7 x - 12 \right )} + \log {\left (x^{6} + x^{5} \left (- 2 e^{4} - \frac {12}{7}\right ) + x^{4} \left (\frac {24 e^{4}}{7} + e^{8}\right ) - \frac {12 x^{3} e^{8}}{7} - \frac {x e^{8}}{7} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________