Optimal. Leaf size=29 \[ e^{2 x} \left (e^{-\frac {2}{x^2 \log (5)}} (1-x)-x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 4.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}} \left (8-16 x+8 x^2+\left (-2 x^4+2 x^5\right ) \log (5)+e^{\frac {4}{x^2 \log (5)}} \left (2 x^4+2 x^5\right ) \log (5)+e^{\frac {2}{x^2 \log (5)}} \left (-8 x+8 x^2+\left (-2 x^3+4 x^5\right ) \log (5)\right )\right )}{x^3 \log (5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{2 x-\frac {4}{x^2 \log (5)}} \left (8-16 x+8 x^2+\left (-2 x^4+2 x^5\right ) \log (5)+e^{\frac {4}{x^2 \log (5)}} \left (2 x^4+2 x^5\right ) \log (5)+e^{\frac {2}{x^2 \log (5)}} \left (-8 x+8 x^2+\left (-2 x^3+4 x^5\right ) \log (5)\right )\right )}{x^3} \, dx}{\log (5)}\\ &=\frac {\int \frac {2 e^{2 x-\frac {4}{x^2 \log (5)}} \left (1-x-e^{\frac {2}{x^2 \log (5)}} x\right ) \left (4-4 x-e^{\frac {2}{x^2 \log (5)}} x^3 \log (5)-x^4 \log (5)-e^{\frac {2}{x^2 \log (5)}} x^4 \log (5)\right )}{x^3} \, dx}{\log (5)}\\ &=\frac {2 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}} \left (1-x-e^{\frac {2}{x^2 \log (5)}} x\right ) \left (4-4 x-e^{\frac {2}{x^2 \log (5)}} x^3 \log (5)-x^4 \log (5)-e^{\frac {2}{x^2 \log (5)}} x^4 \log (5)\right )}{x^3} \, dx}{\log (5)}\\ &=\frac {2 \int \left (e^{2 x} x (1+x) \log (5)+\frac {e^{2 x-\frac {4}{x^2 \log (5)}} (-1+x) \left (-4+4 x+x^4 \log (5)\right )}{x^3}+\frac {e^{2 x-\frac {2}{x^2 \log (5)}} \left (-4+4 x-x^2 \log (5)+x^4 \log (25)\right )}{x^2}\right ) \, dx}{\log (5)}\\ &=2 \int e^{2 x} x (1+x) \, dx+\frac {2 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}} (-1+x) \left (-4+4 x+x^4 \log (5)\right )}{x^3} \, dx}{\log (5)}+\frac {2 \int \frac {e^{2 x-\frac {2}{x^2 \log (5)}} \left (-4+4 x-x^2 \log (5)+x^4 \log (25)\right )}{x^2} \, dx}{\log (5)}\\ &=2 \int \left (e^{2 x} x+e^{2 x} x^2\right ) \, dx+\frac {2 \int \left (\frac {4 e^{2 x-\frac {4}{x^2 \log (5)}}}{x^3}-\frac {8 e^{2 x-\frac {4}{x^2 \log (5)}}}{x^2}+\frac {4 e^{2 x-\frac {4}{x^2 \log (5)}}}{x}-e^{2 x-\frac {4}{x^2 \log (5)}} x \log (5)+e^{2 x-\frac {4}{x^2 \log (5)}} x^2 \log (5)\right ) \, dx}{\log (5)}+\frac {2 \int \left (-\frac {4 e^{2 x-\frac {2}{x^2 \log (5)}}}{x^2}+\frac {4 e^{2 x-\frac {2}{x^2 \log (5)}}}{x}-e^{2 x-\frac {2}{x^2 \log (5)}} \log (5)+e^{2 x-\frac {2}{x^2 \log (5)}} x^2 \log (25)\right ) \, dx}{\log (5)}\\ &=-\left (2 \int e^{2 x-\frac {2}{x^2 \log (5)}} \, dx\right )+2 \int e^{2 x} x \, dx-2 \int e^{2 x-\frac {4}{x^2 \log (5)}} x \, dx+2 \int e^{2 x} x^2 \, dx+2 \int e^{2 x-\frac {4}{x^2 \log (5)}} x^2 \, dx+\frac {8 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x^3} \, dx}{\log (5)}-\frac {8 \int \frac {e^{2 x-\frac {2}{x^2 \log (5)}}}{x^2} \, dx}{\log (5)}+\frac {8 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x} \, dx}{\log (5)}+\frac {8 \int \frac {e^{2 x-\frac {2}{x^2 \log (5)}}}{x} \, dx}{\log (5)}-\frac {16 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x^2} \, dx}{\log (5)}+\frac {(2 \log (25)) \int e^{2 x-\frac {2}{x^2 \log (5)}} x^2 \, dx}{\log (5)}\\ &=e^{2 x} x+e^{2 x} x^2-2 \int e^{2 x-\frac {2}{x^2 \log (5)}} \, dx-2 \int e^{2 x} x \, dx-2 \int e^{2 x-\frac {4}{x^2 \log (5)}} x \, dx+2 \int e^{2 x-\frac {4}{x^2 \log (5)}} x^2 \, dx+\frac {8 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x^3} \, dx}{\log (5)}-\frac {8 \int \frac {e^{2 x-\frac {2}{x^2 \log (5)}}}{x^2} \, dx}{\log (5)}+\frac {8 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x} \, dx}{\log (5)}+\frac {8 \int \frac {e^{2 x-\frac {2}{x^2 \log (5)}}}{x} \, dx}{\log (5)}-\frac {16 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x^2} \, dx}{\log (5)}+\frac {(2 \log (25)) \int e^{2 x-\frac {2}{x^2 \log (5)}} x^2 \, dx}{\log (5)}-\int e^{2 x} \, dx\\ &=-\frac {e^{2 x}}{2}+e^{2 x} x^2-2 \int e^{2 x-\frac {2}{x^2 \log (5)}} \, dx-2 \int e^{2 x-\frac {4}{x^2 \log (5)}} x \, dx+2 \int e^{2 x-\frac {4}{x^2 \log (5)}} x^2 \, dx+\frac {8 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x^3} \, dx}{\log (5)}-\frac {8 \int \frac {e^{2 x-\frac {2}{x^2 \log (5)}}}{x^2} \, dx}{\log (5)}+\frac {8 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x} \, dx}{\log (5)}+\frac {8 \int \frac {e^{2 x-\frac {2}{x^2 \log (5)}}}{x} \, dx}{\log (5)}-\frac {16 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x^2} \, dx}{\log (5)}+\frac {(2 \log (25)) \int e^{2 x-\frac {2}{x^2 \log (5)}} x^2 \, dx}{\log (5)}+\int e^{2 x} \, dx\\ &=e^{2 x} x^2-2 \int e^{2 x-\frac {2}{x^2 \log (5)}} \, dx-2 \int e^{2 x-\frac {4}{x^2 \log (5)}} x \, dx+2 \int e^{2 x-\frac {4}{x^2 \log (5)}} x^2 \, dx+\frac {8 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x^3} \, dx}{\log (5)}-\frac {8 \int \frac {e^{2 x-\frac {2}{x^2 \log (5)}}}{x^2} \, dx}{\log (5)}+\frac {8 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x} \, dx}{\log (5)}+\frac {8 \int \frac {e^{2 x-\frac {2}{x^2 \log (5)}}}{x} \, dx}{\log (5)}-\frac {16 \int \frac {e^{2 x-\frac {4}{x^2 \log (5)}}}{x^2} \, dx}{\log (5)}+\frac {(2 \log (25)) \int e^{2 x-\frac {2}{x^2 \log (5)}} x^2 \, dx}{\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.96, size = 34, normalized size = 1.17 \begin {gather*} e^{2 x-\frac {4}{x^2 \log (5)}} \left (-1+x+e^{\frac {2}{x^2 \log (5)}} x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 60, normalized size = 2.07 \begin {gather*} {\left (x^{2} e^{\left (\frac {4}{x^{2} \log \relax (5)}\right )} + x^{2} + 2 \, {\left (x^{2} - x\right )} e^{\left (\frac {2}{x^{2} \log \relax (5)}\right )} - 2 \, x + 1\right )} e^{\left (\frac {2 \, {\left (x^{3} \log \relax (5) - 2\right )}}{x^{2} \log \relax (5)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 132, normalized size = 4.55 \begin {gather*} \frac {x^{2} e^{\left (2 \, x\right )} \log \relax (5) + 2 \, x^{2} e^{\left (\frac {2 \, {\left (x^{3} \log \relax (5) - 1\right )}}{x^{2} \log \relax (5)}\right )} \log \relax (5) + x^{2} e^{\left (\frac {2 \, {\left (x^{3} \log \relax (5) - 2\right )}}{x^{2} \log \relax (5)}\right )} \log \relax (5) - 2 \, x e^{\left (\frac {2 \, {\left (x^{3} \log \relax (5) - 1\right )}}{x^{2} \log \relax (5)}\right )} \log \relax (5) - 2 \, x e^{\left (\frac {2 \, {\left (x^{3} \log \relax (5) - 2\right )}}{x^{2} \log \relax (5)}\right )} \log \relax (5) + e^{\left (\frac {2 \, {\left (x^{3} \log \relax (5) - 2\right )}}{x^{2} \log \relax (5)}\right )} \log \relax (5)}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 61, normalized size = 2.10
method | result | size |
risch | \({\mathrm e}^{2 x} x^{2}+2 x \left (x -1\right ) {\mathrm e}^{\frac {2 x^{3} \ln \relax (5)-2}{x^{2} \ln \relax (5)}}+\left (x^{2}-2 x +1\right ) {\mathrm e}^{\frac {2 x^{3} \ln \relax (5)-4}{x^{2} \ln \relax (5)}}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.75, size = 94, normalized size = 3.24 \begin {gather*} \frac {{\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} \log \relax (5) + {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} \log \relax (5) + 4 \, {\left (x^{2} \log \relax (5) - x \log \relax (5)\right )} e^{\left (2 \, x - \frac {2}{x^{2} \log \relax (5)}\right )} + 2 \, {\left (x^{2} \log \relax (5) - 2 \, x \log \relax (5) + \log \relax (5)\right )} e^{\left (2 \, x - \frac {4}{x^{2} \log \relax (5)}\right )}}{2 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.21, size = 32, normalized size = 1.10 \begin {gather*} {\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-\frac {4}{x^2\,\ln \relax (5)}}\,{\left (x+x\,{\mathrm {e}}^{\frac {2}{x^2\,\ln \relax (5)}}-1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.33, size = 68, normalized size = 2.34 \begin {gather*} x^{2} e^{2 x} + \left (2 x^{2} e^{2 x} - 2 x e^{2 x}\right ) e^{- \frac {2}{x^{2} \log {\relax (5 )}}} + \left (x^{2} e^{2 x} - 2 x e^{2 x} + e^{2 x}\right ) e^{- \frac {4}{x^{2} \log {\relax (5 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________