Optimal. Leaf size=25 \[ e^x-\frac {9 e}{x \left (2 x+\frac {1}{5} (3+x+\log (x))\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e (1125+7425 x)+e^x \left (27 x^2+297 x^3+1089 x^4+1331 x^5\right )+\left (225 e+e^x \left (27 x^2+198 x^3+363 x^4\right )\right ) \log (x)+e^x \left (9 x^2+33 x^3\right ) \log ^2(x)+e^x x^2 \log ^3(x)}{27 x^2+297 x^3+1089 x^4+1331 x^5+\left (27 x^2+198 x^3+363 x^4\right ) \log (x)+\left (9 x^2+33 x^3\right ) \log ^2(x)+x^2 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x x^2 (3+11 x)^3+225 e (5+33 x)+3 \left (75 e+e^x x^2 (3+11 x)^2\right ) \log (x)+3 e^x x^2 (3+11 x) \log ^2(x)+e^x x^2 \log ^3(x)}{x^2 (3+11 x+\log (x))^3} \, dx\\ &=\int \left (e^x+\frac {225 e (5+33 x+\log (x))}{x^2 (3+11 x+\log (x))^3}\right ) \, dx\\ &=(225 e) \int \frac {5+33 x+\log (x)}{x^2 (3+11 x+\log (x))^3} \, dx+\int e^x \, dx\\ &=e^x+(225 e) \int \left (\frac {2 (1+11 x)}{x^2 (3+11 x+\log (x))^3}+\frac {1}{x^2 (3+11 x+\log (x))^2}\right ) \, dx\\ &=e^x+(225 e) \int \frac {1}{x^2 (3+11 x+\log (x))^2} \, dx+(450 e) \int \frac {1+11 x}{x^2 (3+11 x+\log (x))^3} \, dx\\ &=e^x+(225 e) \int \frac {1}{x^2 (3+11 x+\log (x))^2} \, dx+(450 e) \int \left (\frac {1}{x^2 (3+11 x+\log (x))^3}+\frac {11}{x (3+11 x+\log (x))^3}\right ) \, dx\\ &=e^x+(225 e) \int \frac {1}{x^2 (3+11 x+\log (x))^2} \, dx+(450 e) \int \frac {1}{x^2 (3+11 x+\log (x))^3} \, dx+(4950 e) \int \frac {1}{x (3+11 x+\log (x))^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 19, normalized size = 0.76 \begin {gather*} e^x-\frac {225 e}{x (3+11 x+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.51, size = 81, normalized size = 3.24 \begin {gather*} \frac {x e^{x} \log \relax (x)^{2} + 2 \, {\left (11 \, x^{2} + 3 \, x\right )} e^{x} \log \relax (x) + {\left (121 \, x^{3} + 66 \, x^{2} + 9 \, x\right )} e^{x} - 225 \, e}{121 \, x^{3} + x \log \relax (x)^{2} + 66 \, x^{2} + 2 \, {\left (11 \, x^{2} + 3 \, x\right )} \log \relax (x) + 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 83, normalized size = 3.32 \begin {gather*} \frac {121 \, x^{3} e^{x} + 22 \, x^{2} e^{x} \log \relax (x) + x e^{x} \log \relax (x)^{2} + 66 \, x^{2} e^{x} + 6 \, x e^{x} \log \relax (x) + 9 \, x e^{x} - 225 \, e}{121 \, x^{3} + 22 \, x^{2} \log \relax (x) + x \log \relax (x)^{2} + 66 \, x^{2} + 6 \, x \log \relax (x) + 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 20, normalized size = 0.80
method | result | size |
default | \(-\frac {225 \,{\mathrm e}}{x \left (\ln \relax (x )+11 x +3\right )^{2}}+{\mathrm e}^{x}\) | \(20\) |
risch | \(-\frac {225 \,{\mathrm e}}{x \left (\ln \relax (x )+11 x +3\right )^{2}}+{\mathrm e}^{x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 77, normalized size = 3.08 \begin {gather*} \frac {{\left (121 \, x^{3} + x \log \relax (x)^{2} + 66 \, x^{2} + 2 \, {\left (11 \, x^{2} + 3 \, x\right )} \log \relax (x) + 9 \, x\right )} e^{x} - 225 \, e}{121 \, x^{3} + x \log \relax (x)^{2} + 66 \, x^{2} + 2 \, {\left (11 \, x^{2} + 3 \, x\right )} \log \relax (x) + 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (1331\,x^5+1089\,x^4+297\,x^3+27\,x^2\right )+\ln \relax (x)\,\left (225\,\mathrm {e}+{\mathrm {e}}^x\,\left (363\,x^4+198\,x^3+27\,x^2\right )\right )+\mathrm {e}\,\left (7425\,x+1125\right )+{\mathrm {e}}^x\,{\ln \relax (x)}^2\,\left (33\,x^3+9\,x^2\right )+x^2\,{\mathrm {e}}^x\,{\ln \relax (x)}^3}{\ln \relax (x)\,\left (363\,x^4+198\,x^3+27\,x^2\right )+{\ln \relax (x)}^2\,\left (33\,x^3+9\,x^2\right )+x^2\,{\ln \relax (x)}^3+27\,x^2+297\,x^3+1089\,x^4+1331\,x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 39, normalized size = 1.56 \begin {gather*} e^{x} - \frac {225 e}{121 x^{3} + 66 x^{2} + x \log {\relax (x )}^{2} + 9 x + \left (22 x^{2} + 6 x\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________