Optimal. Leaf size=23 \[ 19+\frac {5 x}{e^{1-\frac {1}{2 x}}-\log (3)} \]
________________________________________________________________________________________
Rubi [F] time = 2.77, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-1+2 x}{2 x}} (-5+10 x)-10 x \log (3)}{2 e^{\frac {-1+2 x}{x}} x-4 e^{\frac {-1+2 x}{2 x}} x \log (3)+2 x \log ^2(3)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{x}} \left (e^{\frac {-1+2 x}{2 x}} (-5+10 x)-10 x \log (3)\right )}{2 x \left (e-e^{\left .\frac {1}{2}\right /x} \log (3)\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {1}{x}} \left (e^{\frac {-1+2 x}{2 x}} (-5+10 x)-10 x \log (3)\right )}{x \left (e-e^{\left .\frac {1}{2}\right /x} \log (3)\right )^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {5 e^{-1+\frac {1}{2 x}} (-1+2 x)}{x}+\frac {5 e^{-1+\frac {1}{x}} (-1+2 x) \log (3)}{x \left (e-e^{\left .\frac {1}{2}\right /x} \log (3)\right )}-\frac {5 e^{\frac {1}{x}} \log (3)}{x \left (-e+e^{\left .\frac {1}{2}\right /x} \log (3)\right )^2}\right ) \, dx\\ &=\frac {5}{2} \int \frac {e^{-1+\frac {1}{2 x}} (-1+2 x)}{x} \, dx+\frac {1}{2} (5 \log (3)) \int \frac {e^{-1+\frac {1}{x}} (-1+2 x)}{x \left (e-e^{\left .\frac {1}{2}\right /x} \log (3)\right )} \, dx-\frac {1}{2} (5 \log (3)) \int \frac {e^{\frac {1}{x}}}{x \left (-e+e^{\left .\frac {1}{2}\right /x} \log (3)\right )^2} \, dx\\ &=5 e^{-1+\frac {1}{2 x}} x+\frac {1}{2} (5 \log (3)) \int \left (\frac {2 e^{-1+\frac {1}{x}}}{e-e^{\left .\frac {1}{2}\right /x} \log (3)}-\frac {e^{-1+\frac {1}{x}}}{x \left (e-e^{\left .\frac {1}{2}\right /x} \log (3)\right )}\right ) \, dx+\frac {1}{2} (5 \log (3)) \operatorname {Subst}\left (\int \frac {e^x}{x \left (e-e^{x/2} \log (3)\right )^2} \, dx,x,\frac {1}{x}\right )\\ &=5 e^{-1+\frac {1}{2 x}} x-\frac {1}{2} (5 \log (3)) \int \frac {e^{-1+\frac {1}{x}}}{x \left (e-e^{\left .\frac {1}{2}\right /x} \log (3)\right )} \, dx+\frac {1}{2} (5 \log (3)) \operatorname {Subst}\left (\int \left (\frac {1}{x \log ^2(3)}+\frac {e^2}{x \log ^2(3) \left (-e+e^{x/2} \log (3)\right )^2}+\frac {2 e}{x \log ^2(3) \left (-e+e^{x/2} \log (3)\right )}\right ) \, dx,x,\frac {1}{x}\right )+(5 \log (3)) \int \frac {e^{-1+\frac {1}{x}}}{e-e^{\left .\frac {1}{2}\right /x} \log (3)} \, dx\\ &=5 e^{-1+\frac {1}{2 x}} x-\frac {5 \log (x)}{2 \log (3)}+\frac {(5 e) \operatorname {Subst}\left (\int \frac {1}{x \left (-e+e^{x/2} \log (3)\right )} \, dx,x,\frac {1}{x}\right )}{\log (3)}+\frac {\left (5 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{x \left (-e+e^{x/2} \log (3)\right )^2} \, dx,x,\frac {1}{x}\right )}{2 \log (3)}+\frac {1}{2} (5 \log (3)) \operatorname {Subst}\left (\int \frac {e^{-1+x}}{e x-e^{x/2} x \log (3)} \, dx,x,\frac {1}{x}\right )+(5 \log (3)) \int \frac {e^{-1+\frac {1}{x}}}{e-e^{\left .\frac {1}{2}\right /x} \log (3)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 34, normalized size = 1.48 \begin {gather*} -\frac {5 x \left (\log (9)-\frac {e \log (9)}{e-e^{\left .\frac {1}{2}\right /x} \log (3)}\right )}{2 \log ^2(3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 21, normalized size = 0.91 \begin {gather*} \frac {5 \, x}{e^{\left (\frac {2 \, x - 1}{2 \, x}\right )} - \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 21, normalized size = 0.91 \begin {gather*} \frac {5 \, x}{e^{\left (\frac {2 \, x - 1}{2 \, x}\right )} - \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.76, size = 22, normalized size = 0.96
method | result | size |
norman | \(-\frac {5 x}{\ln \relax (3)-{\mathrm e}^{\frac {2 x -1}{2 x}}}\) | \(22\) |
risch | \(-\frac {5 x}{\ln \relax (3)-{\mathrm e}^{\frac {2 x -1}{2 x}}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 25, normalized size = 1.09 \begin {gather*} -\frac {5 \, x e^{\left (\frac {1}{2 \, x}\right )}}{e^{\left (\frac {1}{2 \, x}\right )} \log \relax (3) - e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.88, size = 18, normalized size = 0.78 \begin {gather*} -\frac {10\,x}{\ln \relax (9)-2\,{\mathrm {e}}^{1-\frac {1}{2\,x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.61 \begin {gather*} \frac {5 x}{e^{\frac {x - \frac {1}{2}}{x}} - \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________