Optimal. Leaf size=20 \[ \frac {x \log (3)}{\log ^2\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x \log (3)+6 e^x x \log (3)+\left (-6 e^x \log (3)-2 x \log (3)\right ) \log \left (3 e^x+x\right )+\left (3 e^x \log (3)+x \log (3)\right ) \log \left (3 e^x+x\right ) \log \left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (3) \left (2 \left (1+3 e^x\right ) x+\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \left (-2+\log \left (-\frac {x}{\log \left (3 e^x+x\right )}\right )\right )\right )}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx\\ &=\log (3) \int \frac {2 \left (1+3 e^x\right ) x+\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \left (-2+\log \left (-\frac {x}{\log \left (3 e^x+x\right )}\right )\right )}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx\\ &=\log (3) \int \left (-\frac {2 (-1+x) x}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}+\frac {2 x-2 \log \left (3 e^x+x\right )+\log \left (3 e^x+x\right ) \log \left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}{\log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}\right ) \, dx\\ &=\log (3) \int \frac {2 x-2 \log \left (3 e^x+x\right )+\log \left (3 e^x+x\right ) \log \left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}{\log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx-(2 \log (3)) \int \frac {(-1+x) x}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx\\ &=\log (3) \int \left (\frac {2 \left (x-\log \left (3 e^x+x\right )\right )}{\log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}+\frac {1}{\log ^2\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}\right ) \, dx-(2 \log (3)) \int \left (-\frac {x}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}+\frac {x^2}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}\right ) \, dx\\ &=\log (3) \int \frac {1}{\log ^2\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx+(2 \log (3)) \int \frac {x}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx-(2 \log (3)) \int \frac {x^2}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx+(2 \log (3)) \int \frac {x-\log \left (3 e^x+x\right )}{\log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx\\ &=\log (3) \int \frac {1}{\log ^2\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx+(2 \log (3)) \int \left (-\frac {1}{\log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}+\frac {x}{\log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )}\right ) \, dx+(2 \log (3)) \int \frac {x}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx-(2 \log (3)) \int \frac {x^2}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx\\ &=\log (3) \int \frac {1}{\log ^2\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx-(2 \log (3)) \int \frac {1}{\log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx+(2 \log (3)) \int \frac {x}{\log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx+(2 \log (3)) \int \frac {x}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx-(2 \log (3)) \int \frac {x^2}{\left (3 e^x+x\right ) \log \left (3 e^x+x\right ) \log ^3\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 20, normalized size = 1.00 \begin {gather*} \frac {x \log (3)}{\log ^2\left (-\frac {x}{\log \left (3 e^x+x\right )}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 19, normalized size = 0.95 \begin {gather*} \frac {x \log \relax (3)}{\log \left (-\frac {x}{\log \left (x + 3 \, e^{x}\right )}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.31, size = 37, normalized size = 1.85 \begin {gather*} \frac {x \log \relax (3)}{\log \left (-x\right )^{2} - 2 \, \log \left (-x\right ) \log \left (\log \left (x + 3 \, e^{x}\right )\right ) + \log \left (\log \left (x + 3 \, e^{x}\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.56, size = 156, normalized size = 7.80
method | result | size |
risch | \(-\frac {4 \ln \relax (3) x}{\left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \left (3 \,{\mathrm e}^{x}+x \right )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (3 \,{\mathrm e}^{x}+x \right )}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (3 \,{\mathrm e}^{x}+x \right )}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i x}{\ln \left (3 \,{\mathrm e}^{x}+x \right )}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (3 \,{\mathrm e}^{x}+x \right )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (3 \,{\mathrm e}^{x}+x \right )}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i x}{\ln \left (3 \,{\mathrm e}^{x}+x \right )}\right )^{3}-2 \pi +2 i \ln \relax (x )-2 i \ln \left (\ln \left (3 \,{\mathrm e}^{x}+x \right )\right )\right )^{2}}\) | \(156\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 37, normalized size = 1.85 \begin {gather*} \frac {x \log \relax (3)}{\log \left (-x\right )^{2} - 2 \, \log \left (-x\right ) \log \left (\log \left (x + 3 \, e^{x}\right )\right ) + \log \left (\log \left (x + 3 \, e^{x}\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {2\,x\,\ln \relax (3)-\ln \left (x+3\,{\mathrm {e}}^x\right )\,\left (2\,x\,\ln \relax (3)+6\,{\mathrm {e}}^x\,\ln \relax (3)\right )+6\,x\,{\mathrm {e}}^x\,\ln \relax (3)+\ln \left (-\frac {x}{\ln \left (x+3\,{\mathrm {e}}^x\right )}\right )\,\ln \left (x+3\,{\mathrm {e}}^x\right )\,\left (x\,\ln \relax (3)+3\,{\mathrm {e}}^x\,\ln \relax (3)\right )}{{\ln \left (-\frac {x}{\ln \left (x+3\,{\mathrm {e}}^x\right )}\right )}^3\,\ln \left (x+3\,{\mathrm {e}}^x\right )\,\left (x+3\,{\mathrm {e}}^x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.92, size = 19, normalized size = 0.95 \begin {gather*} \frac {x \log {\relax (3 )}}{\log {\left (- \frac {x}{\log {\left (x + 3 e^{x} \right )}} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________