Optimal. Leaf size=24 \[ \frac {5}{3} \log ^2\left (-5-\frac {1}{3} e^{-(4-x)^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.04, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 9, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.170, Rules used = {6741, 12, 6715, 2282, 36, 29, 31, 6688, 6686} \begin {gather*} \frac {5}{3} \log ^2\left (-\frac {1}{3} e^{-(4-x)^2}-5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 2282
Rule 6686
Rule 6688
Rule 6715
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(80-20 x) \log \left (\frac {1}{3} e^{-16+8 x-x^2} \left (-1-15 e^{16-8 x+x^2}\right )\right )}{3 \left (1+15 e^{(-4+x)^2}\right )} \, dx\\ &=\frac {1}{3} \int \frac {(80-20 x) \log \left (\frac {1}{3} e^{-16+8 x-x^2} \left (-1-15 e^{16-8 x+x^2}\right )\right )}{1+15 e^{(-4+x)^2}} \, dx\\ &=\frac {1}{3} \int \frac {20 (4-x) \log \left (-5-\frac {1}{3} e^{-(-4+x)^2}\right )}{1+15 e^{(-4+x)^2}} \, dx\\ &=\frac {20}{3} \int \frac {(4-x) \log \left (-5-\frac {1}{3} e^{-(-4+x)^2}\right )}{1+15 e^{(-4+x)^2}} \, dx\\ &=\frac {5}{3} \log ^2\left (-5-\frac {1}{3} e^{-(4-x)^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 22, normalized size = 0.92 \begin {gather*} \frac {5}{3} \log ^2\left (-5-\frac {1}{3} e^{-(-4+x)^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 31, normalized size = 1.29 \begin {gather*} \frac {5}{3} \, \log \left (-\frac {1}{3} \, {\left (15 \, e^{\left (x^{2} - 8 \, x + 16\right )} + 1\right )} e^{\left (-x^{2} + 8 \, x - 16\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 25, normalized size = 1.04 \begin {gather*} \frac {160}{3} \, x^{2} - \frac {1280}{3} \, x - \frac {160}{3} \, \log \left (15 \, e^{\left (x^{2} - 8 \, x + 16\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 32, normalized size = 1.33
method | result | size |
norman | \(\frac {5 \ln \left (\frac {\left (-15 \,{\mathrm e}^{x^{2}-8 x +16}-1\right ) {\mathrm e}^{-x^{2}+8 x -16}}{3}\right )^{2}}{3}\) | \(32\) |
risch | \(\frac {1280 x}{3}-\frac {10 x^{2} \ln \relax (5)}{3}-\frac {160 \ln \relax (5)}{3}-\frac {5 x^{4}}{3}+\frac {80 x^{3}}{3}-160 x^{2}+\frac {80 x \ln \relax (5)}{3}+\frac {5 i \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right ) \pi \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{3}}{3}-\frac {5 i \pi \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{3} x^{2}}{3}+\frac {40 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{3}}{3}-\frac {80 i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2}}{3}-\frac {80 i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2}}{3}-\frac {80 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2}}{3}+\frac {10 i \pi \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2} x^{2}}{3}-\frac {10 i \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right ) \pi \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2}}{3}-\frac {160 i \pi }{3}-\frac {2560}{3}+\frac {40 i \pi x \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2}}{3}+\frac {80 i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )}{3}+\frac {5 i \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right ) \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2}}{3}+\frac {40 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2}}{3}+\frac {5 i \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right ) \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2}}{3}+\frac {80 i x \pi }{3}-\frac {5 i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2} x^{2}}{3}-\frac {5 i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2} x^{2}}{3}-\frac {10 i \pi \,x^{2}}{3}-\frac {80 i \pi \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{3}}{3}+\frac {10 i \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right ) \pi }{3}+\frac {160 i \pi \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )^{2}}{3}+\frac {5 i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right ) x^{2}}{3}-\frac {5 i \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right ) \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )}{3}-\frac {40 i \pi x \,\mathrm {csgn}\left (i \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\left (x -4\right )^{2}} \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )\right )}{3}+\left (\frac {10 x^{2}}{3}-\frac {80 x}{3}+\frac {160}{3}-\frac {10 \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )}{3}\right ) \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}\right )+\frac {10 \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right ) \ln \relax (5)}{3}+\frac {5 \ln \left ({\mathrm e}^{\left (x -4\right )^{2}}+\frac {1}{15}\right )^{2}}{3}\) | \(890\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.65, size = 113, normalized size = 4.71 \begin {gather*} -\frac {5}{3} \, x^{4} - \frac {10}{3} \, x^{2} {\left (\log \relax (5) + \log \relax (3) + 16\right )} - \frac {10}{3} \, {\left (x^{2} - \log \left (\frac {1}{15} \, {\left (15 \, e^{\left (x^{2} + 16\right )} + e^{\left (8 \, x\right )}\right )} e^{\left (-16\right )}\right )\right )} \log \left (-\frac {1}{3} \, {\left (15 \, e^{\left (x^{2} - 8 \, x + 16\right )} + 1\right )} e^{\left (-x^{2} + 8 \, x - 16\right )}\right ) + \frac {10}{3} \, {\left (x^{2} + \log \relax (5) + \log \relax (3) + 16\right )} \log \left (15 \, e^{\left (x^{2} + 16\right )} + e^{\left (8 \, x\right )}\right ) - \frac {5}{3} \, \log \left (15 \, e^{\left (x^{2} + 16\right )} + e^{\left (8 \, x\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.94, size = 21, normalized size = 0.88 \begin {gather*} \frac {5\,{\ln \left (-\frac {{\mathrm {e}}^{8\,x}\,{\mathrm {e}}^{-16}\,{\mathrm {e}}^{-x^2}}{3}-5\right )}^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 32, normalized size = 1.33 \begin {gather*} \frac {5 \log {\left (\left (- 5 e^{x^{2} - 8 x + 16} - \frac {1}{3}\right ) e^{- x^{2} + 8 x - 16} \right )}^{2}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________