Optimal. Leaf size=22 \[ 27 e^{-2 x} x^2+x \log \left (\frac {1+x}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.93, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 20, number of rules used = 8, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {6688, 6742, 2196, 2176, 2194, 43, 2298, 2549} \begin {gather*} 27 e^{-2 x} x^2+x \log \left (\frac {x+1}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2176
Rule 2194
Rule 2196
Rule 2298
Rule 2549
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{-2 x} x \left (54+e^{2 x}-54 x^2\right )}{1+x}-\frac {1}{\log (x)}+\log \left (\frac {1+x}{\log (x)}\right )\right ) \, dx\\ &=\int \frac {e^{-2 x} x \left (54+e^{2 x}-54 x^2\right )}{1+x} \, dx-\int \frac {1}{\log (x)} \, dx+\int \log \left (\frac {1+x}{\log (x)}\right ) \, dx\\ &=x \log \left (\frac {1+x}{\log (x)}\right )-\text {li}(x)+\int \left (-54 e^{-2 x} (-1+x) x+\frac {x}{1+x}\right ) \, dx-\int \frac {-1-x+x \log (x)}{(1+x) \log (x)} \, dx\\ &=x \log \left (\frac {1+x}{\log (x)}\right )-\text {li}(x)-54 \int e^{-2 x} (-1+x) x \, dx+\int \frac {x}{1+x} \, dx-\int \left (\frac {x}{1+x}-\frac {1}{\log (x)}\right ) \, dx\\ &=x \log \left (\frac {1+x}{\log (x)}\right )-\text {li}(x)-54 \int \left (-e^{-2 x} x+e^{-2 x} x^2\right ) \, dx+\int \left (1+\frac {1}{-1-x}\right ) \, dx-\int \frac {x}{1+x} \, dx+\int \frac {1}{\log (x)} \, dx\\ &=x-\log (1+x)+x \log \left (\frac {1+x}{\log (x)}\right )+54 \int e^{-2 x} x \, dx-54 \int e^{-2 x} x^2 \, dx-\int \left (1+\frac {1}{-1-x}\right ) \, dx\\ &=-27 e^{-2 x} x+27 e^{-2 x} x^2+x \log \left (\frac {1+x}{\log (x)}\right )+27 \int e^{-2 x} \, dx-54 \int e^{-2 x} x \, dx\\ &=-\frac {27}{2} e^{-2 x}+27 e^{-2 x} x^2+x \log \left (\frac {1+x}{\log (x)}\right )-27 \int e^{-2 x} \, dx\\ &=27 e^{-2 x} x^2+x \log \left (\frac {1+x}{\log (x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 22, normalized size = 1.00 \begin {gather*} 27 e^{-2 x} x^2+x \log \left (\frac {1+x}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 26, normalized size = 1.18 \begin {gather*} {\left (x e^{\left (2 \, x\right )} \log \left (\frac {x + 1}{\log \relax (x)}\right ) + 27 \, x^{2}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 22, normalized size = 1.00 \begin {gather*} 27 \, x^{2} e^{\left (-2 \, x\right )} + x \log \left (x + 1\right ) - x \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.58, size = 22, normalized size = 1.00
method | result | size |
default | \(27 x^{2} {\mathrm e}^{-2 x}+\ln \left (\frac {x +1}{\ln \relax (x )}\right ) x\) | \(22\) |
risch | \(x \ln \left (x +1\right )+\frac {x \left (-i {\mathrm e}^{2 x} \pi \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{\ln \relax (x )}\right )+i {\mathrm e}^{2 x} \pi \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{\ln \relax (x )}\right )^{2}+i {\mathrm e}^{2 x} \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )}{\ln \relax (x )}\right )^{2}-i {\mathrm e}^{2 x} \pi \mathrm {csgn}\left (\frac {i \left (x +1\right )}{\ln \relax (x )}\right )^{3}-2 \,{\mathrm e}^{2 x} \ln \left (\ln \relax (x )\right )+54 x \right ) {\mathrm e}^{-2 x}}{2}\) | \(140\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 22, normalized size = 1.00 \begin {gather*} 27 \, x^{2} e^{\left (-2 \, x\right )} + x \log \left (x + 1\right ) - x \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.99, size = 21, normalized size = 0.95 \begin {gather*} 27\,x^2\,{\mathrm {e}}^{-2\,x}+x\,\ln \left (\frac {x+1}{\ln \relax (x)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.85, size = 37, normalized size = 1.68 \begin {gather*} 27 x^{2} e^{- 2 x} + \left (x + \frac {1}{6}\right ) \log {\left (\frac {x + 1}{\log {\relax (x )}} \right )} - \frac {\log {\left (6 x + 6 \right )}}{6} + \frac {\log {\left (\log {\relax (x )} \right )}}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________