Optimal. Leaf size=20 \[ -\frac {8 (1-x)^2}{e^3 x (5+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 23, normalized size of antiderivative = 1.15, number of steps used = 5, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {12, 1594, 27, 893} \begin {gather*} \frac {288}{5 e^3 (x+5)}-\frac {8}{5 e^3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 893
Rule 1594
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {40+16 x-56 x^2}{25 x^2+10 x^3+x^4} \, dx}{e^3}\\ &=\frac {\int \frac {40+16 x-56 x^2}{x^2 \left (25+10 x+x^2\right )} \, dx}{e^3}\\ &=\frac {\int \frac {40+16 x-56 x^2}{x^2 (5+x)^2} \, dx}{e^3}\\ &=\frac {\int \left (\frac {8}{5 x^2}-\frac {288}{5 (5+x)^2}\right ) \, dx}{e^3}\\ &=-\frac {8}{5 e^3 x}+\frac {288}{5 e^3 (5+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 18, normalized size = 0.90 \begin {gather*} \frac {8 (-1+7 x)}{e^3 x (5+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 18, normalized size = 0.90 \begin {gather*} \frac {8 \, {\left (7 \, x - 1\right )} e^{\left (-3\right )}}{x^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 18, normalized size = 0.90 \begin {gather*} \frac {8 \, {\left (7 \, x - 1\right )} e^{\left (-3\right )}}{x^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 17, normalized size = 0.85
method | result | size |
risch | \(\frac {{\mathrm e}^{-3} \left (56 x -8\right )}{\left (5+x \right ) x}\) | \(17\) |
gosper | \(\frac {8 \left (7 x -1\right ) {\mathrm e}^{-3}}{x \left (5+x \right )}\) | \(20\) |
default | \(8 \,{\mathrm e}^{-3} \left (\frac {36}{5 \left (5+x \right )}-\frac {1}{5 x}\right )\) | \(20\) |
norman | \(\frac {56 \,{\mathrm e}^{-3} x -8 \,{\mathrm e}^{-3}}{\left (5+x \right ) x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 18, normalized size = 0.90 \begin {gather*} \frac {8 \, {\left (7 \, x - 1\right )} e^{\left (-3\right )}}{x^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.78, size = 17, normalized size = 0.85 \begin {gather*} \frac {8\,{\mathrm {e}}^{-3}\,\left (7\,x-1\right )}{x\,\left (x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 19, normalized size = 0.95 \begin {gather*} - \frac {8 - 56 x}{x^{2} e^{3} + 5 x e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________