Optimal. Leaf size=26 \[ \frac {\log (2)}{-3-x+\left (3+x+\left (\frac {25}{9 x^2}+x\right )^2\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 7.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (20503125000 x^7+18452812500 x^{10}+7971615000 x^{11}+1992903750 x^{12}+3985807500 x^{13}+1434890700 x^{14}-693530505 x^{16}-602654094 x^{17}-258280326 x^{18}-172186884 x^{19}\right ) \log (2)}{152587890625+439453125000 x^3+237304687500 x^4+79101562500 x^5+553710937500 x^6+512578125000 x^7+293878125000 x^8+485810156250 x^9+476697656250 x^{10}+330920437500 x^{11}+328796313750 x^{12}+271477777500 x^{13}+180099450000 x^{14}+137973893400 x^{15}+93382686756 x^{16}+53122842360 x^{17}+31210998489 x^{18}+15525517374 x^{19}+6356565801 x^{20}+2592369198 x^{21}+774840978 x^{22}+172186884 x^{23}+43046721 x^{24}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (2) \int \frac {20503125000 x^7+18452812500 x^{10}+7971615000 x^{11}+1992903750 x^{12}+3985807500 x^{13}+1434890700 x^{14}-693530505 x^{16}-602654094 x^{17}-258280326 x^{18}-172186884 x^{19}}{152587890625+439453125000 x^3+237304687500 x^4+79101562500 x^5+553710937500 x^6+512578125000 x^7+293878125000 x^8+485810156250 x^9+476697656250 x^{10}+330920437500 x^{11}+328796313750 x^{12}+271477777500 x^{13}+180099450000 x^{14}+137973893400 x^{15}+93382686756 x^{16}+53122842360 x^{17}+31210998489 x^{18}+15525517374 x^{19}+6356565801 x^{20}+2592369198 x^{21}+774840978 x^{22}+172186884 x^{23}+43046721 x^{24}} \, dx\\ &=\log (2) \int \left (-\frac {243 \left (-391796875+2683203125 x-43359375 x^2-1222781250 x^3+3710323125 x^4+2027936250 x^5-570172500 x^6+1434866400 x^7+1454650002 x^8+280306089 x^9+323436888 x^{10}+207804366 x^{11}\right )}{\left (390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}\right )^2}-\frac {243 \left (1003-6869 x+111 x^2+1686 x^3-387 x^4-270 x^5-54 x^6+108 x^7\right )}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}}\right ) \, dx\\ &=-\left ((243 \log (2)) \int \frac {-391796875+2683203125 x-43359375 x^2-1222781250 x^3+3710323125 x^4+2027936250 x^5-570172500 x^6+1434866400 x^7+1454650002 x^8+280306089 x^9+323436888 x^{10}+207804366 x^{11}}{\left (390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}\right )^2} \, dx\right )-(243 \log (2)) \int \frac {1003-6869 x+111 x^2+1686 x^3-387 x^4-270 x^5-54 x^6+108 x^7}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx\\ &=\frac {1282743 \log (2)}{2 \left (390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}\right )}-\frac {1}{324} \log (2) \int \frac {-30846951562500+211253948437500 x-354083637937500 x^2-348754318065000 x^3+186920199990000 x^4-219059980200000 x^5-363018525179400 x^6-73665018222048 x^7-83166140614806 x^8-73369252173672 x^9-4530064731156 x^{10}}{\left (390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}\right )^2} \, dx-(243 \log (2)) \int \left (\frac {1003}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}}-\frac {6869 x}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}}+\frac {111 x^2}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}}+\frac {1686 x^3}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}}-\frac {387 x^4}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}}-\frac {270 x^5}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}}-\frac {54 x^6}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}}+\frac {108 x^7}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}}\right ) \, dx\\ &=\frac {1282743 \log (2)}{2 \left (390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}\right )}-\frac {1}{324} \log (2) \int \frac {39366 \left (-783593750+5366406250 x-8994656250 x^2-8859277500 x^3+4748265000 x^4-5564700000 x^5-9221625900 x^6-1871285328 x^7-2112638841 x^8-1863772092 x^9-115075566 x^{10}\right )}{\left (390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}\right )^2} \, dx+(13122 \log (2)) \int \frac {x^6}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx-(26244 \log (2)) \int \frac {x^7}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx-(26973 \log (2)) \int \frac {x^2}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx+(65610 \log (2)) \int \frac {x^5}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx+(94041 \log (2)) \int \frac {x^4}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx-(243729 \log (2)) \int \frac {1}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx-(409698 \log (2)) \int \frac {x^3}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx+(1669167 \log (2)) \int \frac {x}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx\\ &=\frac {1282743 \log (2)}{2 \left (390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}\right )}-\frac {1}{2} (243 \log (2)) \int \frac {-783593750+5366406250 x-8994656250 x^2-8859277500 x^3+4748265000 x^4-5564700000 x^5-9221625900 x^6-1871285328 x^7-2112638841 x^8-1863772092 x^9-115075566 x^{10}}{\left (390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}\right )^2} \, dx+(13122 \log (2)) \int \frac {x^6}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx-(26244 \log (2)) \int \frac {x^7}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx-(26973 \log (2)) \int \frac {x^2}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx+(65610 \log (2)) \int \frac {x^5}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx+(94041 \log (2)) \int \frac {x^4}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx-(243729 \log (2)) \int \frac {1}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx-(409698 \log (2)) \int \frac {x^3}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx+(1669167 \log (2)) \int \frac {x}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.04, size = 61, normalized size = 2.35 \begin {gather*} \frac {6561 x^8 \log (2)}{390625+562500 x^3+303750 x^4+101250 x^5+303750 x^6+218700 x^7+112266 x^8+105705 x^9+45927 x^{10}+13122 x^{11}+6561 x^{12}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 61, normalized size = 2.35 \begin {gather*} \frac {6561 \, x^{8} \log \relax (2)}{6561 \, x^{12} + 13122 \, x^{11} + 45927 \, x^{10} + 105705 \, x^{9} + 112266 \, x^{8} + 218700 \, x^{7} + 303750 \, x^{6} + 101250 \, x^{5} + 303750 \, x^{4} + 562500 \, x^{3} + 390625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 61, normalized size = 2.35 \begin {gather*} \frac {6561 \, x^{8} \log \relax (2)}{6561 \, x^{12} + 13122 \, x^{11} + 45927 \, x^{10} + 105705 \, x^{9} + 112266 \, x^{8} + 218700 \, x^{7} + 303750 \, x^{6} + 101250 \, x^{5} + 303750 \, x^{4} + 562500 \, x^{3} + 390625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.15, size = 59, normalized size = 2.27
method | result | size |
default | \(\frac {\ln \relax (2) x^{8}}{x^{12}+2 x^{11}+7 x^{10}+\frac {145}{9} x^{9}+\frac {154}{9} x^{8}+\frac {100}{3} x^{7}+\frac {1250}{27} x^{6}+\frac {1250}{81} x^{5}+\frac {1250}{27} x^{4}+\frac {62500}{729} x^{3}+\frac {390625}{6561}}\) | \(59\) |
risch | \(\frac {\ln \relax (2) x^{8}}{x^{12}+2 x^{11}+7 x^{10}+\frac {145}{9} x^{9}+\frac {154}{9} x^{8}+\frac {100}{3} x^{7}+\frac {1250}{27} x^{6}+\frac {1250}{81} x^{5}+\frac {1250}{27} x^{4}+\frac {62500}{729} x^{3}+\frac {390625}{6561}}\) | \(59\) |
gosper | \(\frac {6561 x^{8} \ln \relax (2)}{6561 x^{12}+13122 x^{11}+45927 x^{10}+105705 x^{9}+112266 x^{8}+218700 x^{7}+303750 x^{6}+101250 x^{5}+303750 x^{4}+562500 x^{3}+390625}\) | \(62\) |
norman | \(\frac {6561 x^{8} \ln \relax (2)}{6561 x^{12}+13122 x^{11}+45927 x^{10}+105705 x^{9}+112266 x^{8}+218700 x^{7}+303750 x^{6}+101250 x^{5}+303750 x^{4}+562500 x^{3}+390625}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 61, normalized size = 2.35 \begin {gather*} \frac {6561 \, x^{8} \log \relax (2)}{6561 \, x^{12} + 13122 \, x^{11} + 45927 \, x^{10} + 105705 \, x^{9} + 112266 \, x^{8} + 218700 \, x^{7} + 303750 \, x^{6} + 101250 \, x^{5} + 303750 \, x^{4} + 562500 \, x^{3} + 390625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.95, size = 61, normalized size = 2.35 \begin {gather*} \frac {6561\,x^8\,\ln \relax (2)}{6561\,x^{12}+13122\,x^{11}+45927\,x^{10}+105705\,x^9+112266\,x^8+218700\,x^7+303750\,x^6+101250\,x^5+303750\,x^4+562500\,x^3+390625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.78, size = 60, normalized size = 2.31 \begin {gather*} \frac {6561 x^{8} \log {\relax (2 )}}{6561 x^{12} + 13122 x^{11} + 45927 x^{10} + 105705 x^{9} + 112266 x^{8} + 218700 x^{7} + 303750 x^{6} + 101250 x^{5} + 303750 x^{4} + 562500 x^{3} + 390625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________