Optimal. Leaf size=22 \[ \frac {1}{1+x+\left (1+e^{15 e x} \log \left (\frac {4}{x^2}\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 5.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 e^{15 e x}-x+\left (4 e^{30 e x}-30 e^{1+15 e x} x\right ) \log \left (\frac {4}{x^2}\right )-30 e^{1+30 e x} x \log ^2\left (\frac {4}{x^2}\right )}{4 x+4 x^2+x^3+e^{15 e x} \left (8 x+4 x^2\right ) \log \left (\frac {4}{x^2}\right )+e^{30 e x} \left (8 x+2 x^2\right ) \log ^2\left (\frac {4}{x^2}\right )+4 e^{45 e x} x \log ^3\left (\frac {4}{x^2}\right )+e^{60 e x} x \log ^4\left (\frac {4}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{15 e x}-x+2 e^{15 e x} \left (2 e^{15 e x}-15 e x\right ) \log \left (\frac {4}{x^2}\right )-30 e^{1+30 e x} x \log ^2\left (\frac {4}{x^2}\right )}{x \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2} \, dx\\ &=\int \left (-\frac {2 \left (-2+15 e x \log \left (\frac {4}{x^2}\right )\right )}{x \log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )}+\frac {-8-4 x-4 e^{15 e x} \log \left (\frac {4}{x^2}\right )-(1-60 e) x \log \left (\frac {4}{x^2}\right )+30 e x^2 \log \left (\frac {4}{x^2}\right )+30 e^{1+15 e x} x \log ^2\left (\frac {4}{x^2}\right )}{x \log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {-2+15 e x \log \left (\frac {4}{x^2}\right )}{x \log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )} \, dx\right )+\int \frac {-8-4 x-4 e^{15 e x} \log \left (\frac {4}{x^2}\right )-(1-60 e) x \log \left (\frac {4}{x^2}\right )+30 e x^2 \log \left (\frac {4}{x^2}\right )+30 e^{1+15 e x} x \log ^2\left (\frac {4}{x^2}\right )}{x \log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2} \, dx\\ &=-\left (2 \int \left (\frac {15 e}{2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )}-\frac {2}{x \log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )}\right ) \, dx\right )+\int \left (\frac {-1+60 e}{\left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2}-\frac {4 e^{15 e x}}{x \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2}+\frac {30 e x}{\left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2}-\frac {4}{\log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2}-\frac {8}{x \log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2}+\frac {30 e^{1+15 e x} \log \left (\frac {4}{x^2}\right )}{\left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {e^{15 e x}}{x \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2} \, dx\right )-4 \int \frac {1}{\log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2} \, dx+4 \int \frac {1}{x \log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )} \, dx-8 \int \frac {1}{x \log \left (\frac {4}{x^2}\right ) \left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2} \, dx+30 \int \frac {e^{1+15 e x} \log \left (\frac {4}{x^2}\right )}{\left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2} \, dx+(30 e) \int \frac {x}{\left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2} \, dx-(30 e) \int \frac {1}{2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )} \, dx+(-1+60 e) \int \frac {1}{\left (2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 34, normalized size = 1.55 \begin {gather*} \frac {1}{2+x+2 e^{15 e x} \log \left (\frac {4}{x^2}\right )+e^{30 e x} \log ^2\left (\frac {4}{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.94, size = 45, normalized size = 2.05 \begin {gather*} \frac {e^{2}}{e^{\left (30 \, x e + 2\right )} \log \left (\frac {4}{x^{2}}\right )^{2} + {\left (x + 2\right )} e^{2} + 2 \, e^{\left (15 \, x e + 2\right )} \log \left (\frac {4}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 2.91, size = 403, normalized size = 18.32
method | result | size |
risch | \(-\frac {4}{-8-4 x +{\mathrm e}^{30 x \,{\mathrm e}} \pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}-4 \,{\mathrm e}^{30 x \,{\mathrm e}} \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}+6 \,{\mathrm e}^{30 x \,{\mathrm e}} \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}-4 \,{\mathrm e}^{30 x \,{\mathrm e}} \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-16 \ln \relax (2) {\mathrm e}^{15 x \,{\mathrm e}}+16 \,{\mathrm e}^{15 x \,{\mathrm e}} \ln \relax (x )-16 \ln \relax (2)^{2} {\mathrm e}^{30 x \,{\mathrm e}}-16 \,{\mathrm e}^{30 x \,{\mathrm e}} \ln \relax (x )^{2}-4 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{15 x \,{\mathrm e}}+32 \,{\mathrm e}^{30 x \,{\mathrm e}} \ln \relax (2) \ln \relax (x )-16 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{30 x \,{\mathrm e}} \ln \relax (x )-8 i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{30 x \,{\mathrm e}}-8 i \pi \ln \relax (2) \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{30 x \,{\mathrm e}}+8 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{30 x \,{\mathrm e}} \ln \relax (x )+{\mathrm e}^{30 x \,{\mathrm e}} \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}+8 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{30 x \,{\mathrm e}} \ln \relax (x )+8 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{15 x \,{\mathrm e}}-4 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{15 x \,{\mathrm e}}+16 i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{30 x \,{\mathrm e}}}\) | \(403\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.99, size = 43, normalized size = 1.95 \begin {gather*} \frac {1}{4 \, {\left (\log \relax (2)^{2} - 2 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2}\right )} e^{\left (30 \, x e\right )} + 4 \, {\left (\log \relax (2) - \log \relax (x)\right )} e^{\left (15 \, x e\right )} + x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {30\,x\,\mathrm {e}\,{\mathrm {e}}^{30\,x\,\mathrm {e}}\,{\ln \left (\frac {4}{x^2}\right )}^2+\left (30\,x\,\mathrm {e}\,{\mathrm {e}}^{15\,x\,\mathrm {e}}-4\,{\mathrm {e}}^{30\,x\,\mathrm {e}}\right )\,\ln \left (\frac {4}{x^2}\right )+x-4\,{\mathrm {e}}^{15\,x\,\mathrm {e}}}{4\,x+4\,x^2+x^3+{\mathrm {e}}^{15\,x\,\mathrm {e}}\,\ln \left (\frac {4}{x^2}\right )\,\left (4\,x^2+8\,x\right )+{\mathrm {e}}^{30\,x\,\mathrm {e}}\,{\ln \left (\frac {4}{x^2}\right )}^2\,\left (2\,x^2+8\,x\right )+4\,x\,{\mathrm {e}}^{45\,x\,\mathrm {e}}\,{\ln \left (\frac {4}{x^2}\right )}^3+x\,{\mathrm {e}}^{60\,x\,\mathrm {e}}\,{\ln \left (\frac {4}{x^2}\right )}^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 37, normalized size = 1.68 \begin {gather*} \frac {1}{x + e^{30 e x} \log {\left (\frac {4}{x^{2}} \right )}^{2} + 2 e^{15 e x} \log {\left (\frac {4}{x^{2}} \right )} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________