Optimal. Leaf size=33 \[ \frac {(i \pi +\log (-\log (\log (2))))^2}{-3+2^{\frac {1}{2} x^3 \left (e^x+x\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.88, antiderivative size = 36, normalized size of antiderivative = 1.09, number of steps used = 4, number of rules used = 3, integrand size = 110, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {12, 6688, 6686} \begin {gather*} -\frac {(\log (-\log (\log (2)))+i \pi )^2}{3-2^{\frac {1}{2} x^3 \left (x+e^x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(i \pi +\log (-\log (\log (2))))^2 \int \frac {e^{\frac {1}{2} \left (e^x x^3 \log (2)+x^4 \log (2)\right )} \left (-4 x^3 \log (2)+e^x \left (-3 x^2-x^3\right ) \log (2)\right )}{18-12 e^{\frac {1}{2} \left (e^x x^3 \log (2)+x^4 \log (2)\right )}+2 e^{e^x x^3 \log (2)+x^4 \log (2)}} \, dx\\ &=(i \pi +\log (-\log (\log (2))))^2 \int \frac {2^{\frac {1}{2} \left (-2+e^x x^3+x^4\right )} x^2 \left (-4 x-e^x (3+x)\right ) \log (2)}{\left (3-2^{\frac {1}{2} x^3 \left (e^x+x\right )}\right )^2} \, dx\\ &=\left (\log (2) (i \pi +\log (-\log (\log (2))))^2\right ) \int \frac {2^{\frac {1}{2} \left (-2+e^x x^3+x^4\right )} x^2 \left (-4 x-e^x (3+x)\right )}{\left (3-2^{\frac {1}{2} x^3 \left (e^x+x\right )}\right )^2} \, dx\\ &=-\frac {(i \pi +\log (-\log (\log (2))))^2}{3-2^{\frac {1}{2} x^3 \left (e^x+x\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 34, normalized size = 1.03 \begin {gather*} -\frac {(\pi -i \log (-\log (\log (2))))^2}{-3+2^{\frac {1}{2} x^3 \left (e^x+x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 29, normalized size = 0.88 \begin {gather*} \frac {\log \left (\log \left (\log \relax (2)\right )\right )^{2}}{e^{\left (\frac {1}{2} \, x^{4} \log \relax (2) + \frac {1}{2} \, x^{3} e^{x} \log \relax (2)\right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 29, normalized size = 0.88 \begin {gather*} \frac {\log \left (\log \left (\log \relax (2)\right )\right )^{2}}{e^{\left (\frac {1}{2} \, x^{4} \log \relax (2) + \frac {1}{2} \, x^{3} e^{x} \log \relax (2)\right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 29, normalized size = 0.88
method | result | size |
risch | \(\frac {\ln \left (\ln \left (\ln \relax (2)\right )\right )^{2}}{2^{\frac {{\mathrm e}^{x} x^{3}}{2}} 2^{\frac {x^{4}}{2}}-3}\) | \(29\) |
norman | \(\frac {\ln \left (\ln \left (\ln \relax (2)\right )\right )^{2}}{{\mathrm e}^{\frac {x^{3} \ln \relax (2) {\mathrm e}^{x}}{2}+\frac {x^{4} \ln \relax (2)}{2}}-3}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.11, size = 29, normalized size = 0.88 \begin {gather*} \frac {\log \left (\log \left (\log \relax (2)\right )\right )^{2}}{e^{\left (\frac {1}{2} \, x^{4} \log \relax (2) + \frac {1}{2} \, x^{3} e^{x} \log \relax (2)\right )} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\ln \left (\ln \left (\ln \relax (2)\right )\right )}^2\,{\mathrm {e}}^{\frac {x^4\,\ln \relax (2)}{2}+\frac {x^3\,{\mathrm {e}}^x\,\ln \relax (2)}{2}}\,\left (4\,x^3\,\ln \relax (2)+{\mathrm {e}}^x\,\ln \relax (2)\,\left (x^3+3\,x^2\right )\right )}{2\,{\mathrm {e}}^{x^4\,\ln \relax (2)+x^3\,{\mathrm {e}}^x\,\ln \relax (2)}-12\,{\mathrm {e}}^{\frac {x^4\,\ln \relax (2)}{2}+\frac {x^3\,{\mathrm {e}}^x\,\ln \relax (2)}{2}}+18} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.70, size = 51, normalized size = 1.55 \begin {gather*} \frac {- \pi ^{2} + \log {\left (- \log {\left (\log {\relax (2 )} \right )} \right )}^{2} + 2 i \pi \log {\left (- \log {\left (\log {\relax (2 )} \right )} \right )}}{e^{\frac {x^{4} \log {\relax (2 )}}{2}} e^{\frac {x^{3} e^{x} \log {\relax (2 )}}{2}} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________