Optimal. Leaf size=26 \[ -4+\frac {\log (x)}{x \left (\frac {5}{e^2}+x \left (x+\log \left (e^5 x\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 e^2+e^4 x^2+\left (-5 e^2+e^4 \left (-x-3 x^2\right )\right ) \log (x)+\left (e^4 x-2 e^4 x \log (x)\right ) \log \left (e^5 x\right )}{25 x^2+10 e^2 x^4+e^4 x^6+\left (10 e^2 x^3+2 e^4 x^5\right ) \log \left (e^5 x\right )+e^4 x^4 \log ^2\left (e^5 x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 \left (5+e^2 x (5+x)-\left (5+e^2 x (10+3 x)\right ) \log (x)-2 e^2 x \log ^2(x)\right )}{x^2 \left (5+e^2 x (5+x)+e^2 x \log (x)\right )^2} \, dx\\ &=e^2 \int \frac {5+e^2 x (5+x)-\left (5+e^2 x (10+3 x)\right ) \log (x)-2 e^2 x \log ^2(x)}{x^2 \left (5+e^2 x (5+x)+e^2 x \log (x)\right )^2} \, dx\\ &=e^2 \int \left (-\frac {2}{e^2 x^3}+\frac {-25-20 e^2 x+5 e^4 x^2+6 e^4 x^3+e^4 x^4}{e^2 x^3 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2}+\frac {15+10 e^2 x+e^2 x^2}{e^2 x^3 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )}\right ) \, dx\\ &=\frac {1}{x^2}+\int \frac {-25-20 e^2 x+5 e^4 x^2+6 e^4 x^3+e^4 x^4}{x^3 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2} \, dx+\int \frac {15+10 e^2 x+e^2 x^2}{x^3 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )} \, dx\\ &=\frac {1}{x^2}+\int \left (\frac {6 e^4}{\left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2}-\frac {25}{x^3 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2}-\frac {20 e^2}{x^2 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2}+\frac {5 e^4}{x \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2}+\frac {e^4 x}{\left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2}\right ) \, dx+\int \left (\frac {15}{x^3 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )}+\frac {10 e^2}{x^2 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )}+\frac {e^2}{x \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )}\right ) \, dx\\ &=\frac {1}{x^2}+15 \int \frac {1}{x^3 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )} \, dx-25 \int \frac {1}{x^3 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2} \, dx+e^2 \int \frac {1}{x \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )} \, dx+\left (10 e^2\right ) \int \frac {1}{x^2 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )} \, dx-\left (20 e^2\right ) \int \frac {1}{x^2 \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2} \, dx+e^4 \int \frac {x}{\left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2} \, dx+\left (5 e^4\right ) \int \frac {1}{x \left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2} \, dx+\left (6 e^4\right ) \int \frac {1}{\left (5+5 e^2 x+e^2 x^2+e^2 x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.61, size = 28, normalized size = 1.08 \begin {gather*} \frac {e^2 \log (x)}{x \left (5+e^2 x (5+x)+e^2 x \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 31, normalized size = 1.19 \begin {gather*} \frac {e^{2} \log \relax (x)}{x^{2} e^{2} \log \relax (x) + {\left (x^{3} + 5 \, x^{2}\right )} e^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 32, normalized size = 1.23 \begin {gather*} \frac {e^{2} \log \relax (x)}{x^{3} e^{2} + x^{2} e^{2} \log \relax (x) + 5 \, x^{2} e^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 47, normalized size = 1.81
method | result | size |
risch | \(\frac {1}{x^{2}}-\frac {10+2 x^{2} {\mathrm e}^{2}+10 \,{\mathrm e}^{2} x}{x^{2} \left (10+2 x^{2} {\mathrm e}^{2}+2 x \,{\mathrm e}^{2} \ln \relax (x )+10 \,{\mathrm e}^{2} x \right )}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.85, size = 32, normalized size = 1.23 \begin {gather*} \frac {e^{2} \log \relax (x)}{x^{3} e^{2} + x^{2} e^{2} \log \relax (x) + 5 \, x^{2} e^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.60, size = 29, normalized size = 1.12 \begin {gather*} \frac {{\mathrm {e}}^2\,\ln \relax (x)}{x\,\left (5\,x\,{\mathrm {e}}^2+x^2\,{\mathrm {e}}^2+x\,{\mathrm {e}}^2\,\ln \relax (x)+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.34, size = 51, normalized size = 1.96 \begin {gather*} \frac {- x^{2} e^{2} - 5 x e^{2} - 5}{x^{4} e^{2} + x^{3} e^{2} \log {\relax (x )} + 5 x^{3} e^{2} + 5 x^{2}} + \frac {1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________