Optimal. Leaf size=30 \[ \frac {e^{(3+x) \left (x^2-\frac {e^5 (-2+2 x)}{x}\right )}}{\log (2 x)} \]
________________________________________________________________________________________
Rubi [B] time = 1.34, antiderivative size = 79, normalized size of antiderivative = 2.63, number of steps used = 2, number of rules used = 2, integrand size = 99, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {6688, 2288} \begin {gather*} -\frac {e^{x^2 (x+3)-2 e^5 \left (x-\frac {3}{x}+2\right )} \left (3 x^3 (x+2)-2 e^5 \left (x^2+3\right )\right )}{x^2 \left (-x^2+2 e^5 \left (\frac {3}{x^2}+1\right )-2 (x+3) x\right ) \log (2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^5 \left (-4+\frac {6}{x}-2 x\right )+x^2 (3+x)} \left (-x+\left (3 x^3 (2+x)-2 e^5 \left (3+x^2\right )\right ) \log (2 x)\right )}{x^2 \log ^2(2 x)} \, dx\\ &=-\frac {e^{x^2 (3+x)-2 e^5 \left (2-\frac {3}{x}+x\right )} \left (3 x^3 (2+x)-2 e^5 \left (3+x^2\right )\right )}{x^2 \left (2 e^5 \left (1+\frac {3}{x^2}\right )-x^2-2 x (3+x)\right ) \log (2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 31, normalized size = 1.03 \begin {gather*} \frac {e^{e^5 \left (-4+\frac {6}{x}-2 x\right )+x^2 (3+x)}}{\log (2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 33, normalized size = 1.10 \begin {gather*} \frac {e^{\left (\frac {x^{4} + 3 \, x^{3} - 2 \, {\left (x^{2} + 2 \, x - 3\right )} e^{5}}{x}\right )}}{\log \left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.47, size = 37, normalized size = 1.23 \begin {gather*} \frac {e^{\left (\frac {x^{4} + 3 \, x^{3} - 2 \, x^{2} e^{5} - 4 \, x e^{5} + 6 \, e^{5}}{x}\right )}}{\log \left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.07
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {\left (3+x \right ) \left (-x^{3}+2 x \,{\mathrm e}^{5}-2 \,{\mathrm e}^{5}\right )}{x}}}{\ln \left (2 x \right )}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 42, normalized size = 1.40 \begin {gather*} \frac {e^{\left (x^{3} + 3 \, x^{2} - 2 \, x e^{5} + \frac {6 \, e^{5}}{x}\right )}}{e^{\left (4 \, e^{5}\right )} \log \relax (2) + e^{\left (4 \, e^{5}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.02, size = 37, normalized size = 1.23 \begin {gather*} \frac {{\mathrm {e}}^{\frac {6\,{\mathrm {e}}^5}{x}}\,{\mathrm {e}}^{-4\,{\mathrm {e}}^5}\,{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{3\,x^2}\,{\mathrm {e}}^{-2\,x\,{\mathrm {e}}^5}}{\ln \relax (2)+\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 29, normalized size = 0.97 \begin {gather*} \frac {e^{\frac {x^{4} + 3 x^{3} + \left (- 2 x^{2} - 4 x + 6\right ) e^{5}}{x}}}{\log {\left (2 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________