Optimal. Leaf size=23 \[ 2 \left (2+3 e^9-x \log \left (4-\log \left (-4 x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4+\left (8-2 \log \left (-4 x^2\right )\right ) \log \left (4-\log \left (-4 x^2\right )\right )}{-4+\log \left (-4 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {4}{-4+\log \left (-4 x^2\right )}-2 \log \left (4-\log \left (-4 x^2\right )\right )\right ) \, dx\\ &=-\left (2 \int \log \left (4-\log \left (-4 x^2\right )\right ) \, dx\right )-4 \int \frac {1}{-4+\log \left (-4 x^2\right )} \, dx\\ &=-\left (2 \int \log \left (4-\log \left (-4 x^2\right )\right ) \, dx\right )-\frac {x \operatorname {Subst}\left (\int \frac {e^{x/2}}{-4+x} \, dx,x,\log \left (-4 x^2\right )\right )}{\sqrt {-x^2}}\\ &=-\frac {e^2 x \text {Ei}\left (\frac {1}{2} \left (-4+\log \left (-4 x^2\right )\right )\right )}{\sqrt {-x^2}}-2 \int \log \left (4-\log \left (-4 x^2\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 14, normalized size = 0.61 \begin {gather*} -2 x \log \left (4-\log \left (-4 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 14, normalized size = 0.61 \begin {gather*} -2 \, x \log \left (-\log \left (-4 \, x^{2}\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 14, normalized size = 0.61 \begin {gather*} -2 \, x \log \left (-\log \left (-4 \, x^{2}\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 15, normalized size = 0.65
method | result | size |
norman | \(-2 x \ln \left (-\ln \left (-4 x^{2}\right )+4\right )\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.59, size = 17, normalized size = 0.74 \begin {gather*} -2 \, x \log \left (-i \, \pi - 2 \, \log \relax (2) - 2 \, \log \relax (x) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.99, size = 14, normalized size = 0.61 \begin {gather*} -2\,x\,\ln \left (4-\ln \left (-4\,x^2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 15, normalized size = 0.65 \begin {gather*} - 2 x \log {\left (4 - \log {\left (- 4 x^{2} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________