Optimal. Leaf size=22 \[ \left (x+\log \left (-5+\frac {16}{x^4}-\log (-2+x)+\log \left (x^2\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.64, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 200, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {6688, 12, 6686} \begin {gather*} \left (\log \left (\frac {16}{x^4}+\log \left (x^2\right )-\log (x-2)-5\right )+x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (128-96 x+16 x^2-4 x^4+11 x^5-5 x^6-(-2+x) x^5 \log (-2+x)+(-2+x) x^5 \log \left (x^2\right )\right ) \left (-x-\log \left (-5+\frac {16}{x^4}-\log (-2+x)+\log \left (x^2\right )\right )\right )}{(2-x) x \left (16-5 x^4-x^4 \log (-2+x)+x^4 \log \left (x^2\right )\right )} \, dx\\ &=2 \int \frac {\left (128-96 x+16 x^2-4 x^4+11 x^5-5 x^6-(-2+x) x^5 \log (-2+x)+(-2+x) x^5 \log \left (x^2\right )\right ) \left (-x-\log \left (-5+\frac {16}{x^4}-\log (-2+x)+\log \left (x^2\right )\right )\right )}{(2-x) x \left (16-5 x^4-x^4 \log (-2+x)+x^4 \log \left (x^2\right )\right )} \, dx\\ &=\left (x+\log \left (-5+\frac {16}{x^4}-\log (-2+x)+\log \left (x^2\right )\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 54, normalized size = 2.45 \begin {gather*} 2 \left (\frac {x^2}{2}+x \log \left (-5+\frac {16}{x^4}-\log (-2+x)+\log \left (x^2\right )\right )+\frac {1}{2} \log ^2\left (-5+\frac {16}{x^4}-\log (-2+x)+\log \left (x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 67, normalized size = 3.05 \begin {gather*} x^{2} + 2 \, x \log \left (\frac {x^{4} \log \left (x^{2}\right ) - x^{4} \log \left (x - 2\right ) - 5 \, x^{4} + 16}{x^{4}}\right ) + \log \left (\frac {x^{4} \log \left (x^{2}\right ) - x^{4} \log \left (x - 2\right ) - 5 \, x^{4} + 16}{x^{4}}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (5 \, x^{7} - 11 \, x^{6} + 4 \, x^{5} - 16 \, x^{3} + 96 \, x^{2} - {\left (x^{7} - 2 \, x^{6}\right )} \log \left (x^{2}\right ) + {\left (x^{7} - 2 \, x^{6}\right )} \log \left (x - 2\right ) + {\left (5 \, x^{6} - 11 \, x^{5} + 4 \, x^{4} - 16 \, x^{2} - {\left (x^{6} - 2 \, x^{5}\right )} \log \left (x^{2}\right ) + {\left (x^{6} - 2 \, x^{5}\right )} \log \left (x - 2\right ) + 96 \, x - 128\right )} \log \left (\frac {x^{4} \log \left (x^{2}\right ) - x^{4} \log \left (x - 2\right ) - 5 \, x^{4} + 16}{x^{4}}\right ) - 128 \, x\right )}}{5 \, x^{6} - 10 \, x^{5} - 16 \, x^{2} - {\left (x^{6} - 2 \, x^{5}\right )} \log \left (x^{2}\right ) + {\left (x^{6} - 2 \, x^{5}\right )} \log \left (x - 2\right ) + 32 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (2 x^{6}-4 x^{5}\right ) \ln \left (x^{2}\right )+\left (-2 x^{6}+4 x^{5}\right ) \ln \left (x -2\right )-10 x^{6}+22 x^{5}-8 x^{4}+32 x^{2}-192 x +256\right ) \ln \left (\frac {x^{4} \ln \left (x^{2}\right )-x^{4} \ln \left (x -2\right )-5 x^{4}+16}{x^{4}}\right )+\left (2 x^{7}-4 x^{6}\right ) \ln \left (x^{2}\right )+\left (-2 x^{7}+4 x^{6}\right ) \ln \left (x -2\right )-10 x^{7}+22 x^{6}-8 x^{5}+32 x^{3}-192 x^{2}+256 x}{\left (x^{6}-2 x^{5}\right ) \ln \left (x^{2}\right )+\left (-x^{6}+2 x^{5}\right ) \ln \left (x -2\right )-5 x^{6}+10 x^{5}+16 x^{2}-32 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, \int \frac {5 \, x^{7} - 11 \, x^{6} + 4 \, x^{5} - 16 \, x^{3} + 96 \, x^{2} - {\left (x^{7} - 2 \, x^{6}\right )} \log \left (x^{2}\right ) + {\left (x^{7} - 2 \, x^{6}\right )} \log \left (x - 2\right ) + {\left (5 \, x^{6} - 11 \, x^{5} + 4 \, x^{4} - 16 \, x^{2} - {\left (x^{6} - 2 \, x^{5}\right )} \log \left (x^{2}\right ) + {\left (x^{6} - 2 \, x^{5}\right )} \log \left (x - 2\right ) + 96 \, x - 128\right )} \log \left (\frac {x^{4} \log \left (x^{2}\right ) - x^{4} \log \left (x - 2\right ) - 5 \, x^{4} + 16}{x^{4}}\right ) - 128 \, x}{5 \, x^{6} - 10 \, x^{5} - 16 \, x^{2} - {\left (x^{6} - 2 \, x^{5}\right )} \log \left (x^{2}\right ) + {\left (x^{6} - 2 \, x^{5}\right )} \log \left (x - 2\right ) + 32 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.45, size = 34, normalized size = 1.55 \begin {gather*} {\left (x+\ln \left (-\frac {x^4\,\ln \left (x-2\right )-x^4\,\ln \left (x^2\right )+5\,x^4-16}{x^4}\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.73, size = 65, normalized size = 2.95 \begin {gather*} x^{2} + 2 x \log {\left (\frac {x^{4} \log {\left (x^{2} \right )} - x^{4} \log {\left (x - 2 \right )} - 5 x^{4} + 16}{x^{4}} \right )} + \log {\left (\frac {x^{4} \log {\left (x^{2} \right )} - x^{4} \log {\left (x - 2 \right )} - 5 x^{4} + 16}{x^{4}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________