Optimal. Leaf size=29 \[ 2 x+x^2-(x-4 (i \pi +\log (3))) \log \left ((-4-x)^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 33, normalized size of antiderivative = 1.14, number of steps used = 7, number of rules used = 5, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {6741, 6742, 698, 2389, 2295} \begin {gather*} x^2+2 x+2 (4+4 i \pi +\log (81)) \log (x+4)-(x+4) \log \left ((x+4)^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 698
Rule 2295
Rule 2389
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 x+2 x^2+8 (1+i \pi +\log (3))+(-4-x) \log \left (16+8 x+x^2\right )}{4+x} \, dx\\ &=\int \left (\frac {2 i \left (4 \pi -4 i x-i x^2-i (4+\log (81))\right )}{4+x}-\log \left ((4+x)^2\right )\right ) \, dx\\ &=2 i \int \frac {4 \pi -4 i x-i x^2-i (4+\log (81))}{4+x} \, dx-\int \log \left ((4+x)^2\right ) \, dx\\ &=2 i \int \left (-i x+\frac {4 \pi -i (4+\log (81))}{4+x}\right ) \, dx-\operatorname {Subst}\left (\int \log \left (x^2\right ) \, dx,x,4+x\right )\\ &=2 x+x^2+2 (4+4 i \pi +\log (81)) \log (4+x)-(4+x) \log \left ((4+x)^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 34, normalized size = 1.17 \begin {gather*} -16+2 x+x^2+2 (4+4 i \pi +\log (81)) \log (4+x)-(4+x) \log \left ((4+x)^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 28, normalized size = 0.97 \begin {gather*} x^{2} + {\left (4 i \, \pi - x + 4 \, \log \relax (3)\right )} \log \left (x^{2} + 8 \, x + 16\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 33, normalized size = 1.14 \begin {gather*} x^{2} - x \log \left (x^{2} + 8 \, x + 16\right ) - 8 \, {\left (-i \, \pi - \log \relax (3)\right )} \log \left (x + 4\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.57, size = 36, normalized size = 1.24
method | result | size |
default | \(8 \ln \relax (3) \ln \left (4+x \right )+x^{2}+8 i \pi \ln \left (4+x \right )-\ln \left (x^{2}+8 x +16\right ) x +2 x\) | \(36\) |
risch | \(8 \ln \relax (3) \ln \left (4+x \right )+x^{2}+8 i \pi \ln \left (4+x \right )-\ln \left (x^{2}+8 x +16\right ) x +2 x\) | \(36\) |
norman | \(x^{2}+\left (4 i \pi +4 \ln \relax (3)\right ) \ln \left (x^{2}+8 x +16\right )+2 x -\ln \left (x^{2}+8 x +16\right ) x\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 49, normalized size = 1.69 \begin {gather*} x^{2} - {\left (x - 4 \, \log \left (x + 4\right )\right )} \log \left (x^{2} + 8 \, x + 16\right ) + 8 i \, \pi \log \left (x + 4\right ) + 8 \, \log \relax (3) \log \left (x + 4\right ) - 8 \, \log \left (x + 4\right )^{2} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 36, normalized size = 1.24 \begin {gather*} 2\,x+4\,\ln \relax (3)\,\ln \left ({\left (x+4\right )}^2\right )-x\,\ln \left ({\left (x+4\right )}^2\right )+x^2+\Pi \,\ln \left ({\left (x+4\right )}^2\right )\,4{}\mathrm {i} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 31, normalized size = 1.07 \begin {gather*} x^{2} - x \log {\left (x^{2} + 8 x + 16 \right )} + 2 x + 8 \left (\log {\relax (3 )} + i \pi \right ) \log {\left (x + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________