3.33.1
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [B] time = 1.07, antiderivative size = 213, normalized size of antiderivative = 8.52,
number of steps used = 15, number of rules used = 9, integrand size = 148, = 0.061, Rules used
= {6, 12, 6741, 27, 6742, 2209, 44, 77, 683}
Antiderivative was successfully verified.
[In]
Int[(-16 - 4*E^2 + E*(-16 - 8*x) - 16*x - 4*x^2 + E^2*(10*x^2 + 2*E^2*x^2 + 8*x^3 + 2*x^4 + E*(9*x^2 + 4*x^3))
+ E^(2 + x^2)*(8*x^3 + 2*E^2*x^3 + 8*x^4 + 2*x^5 + E*(8*x^3 + 4*x^4)))/(E^2*(4*x^2 + E^2*x^2 + 4*x^3 + x^4 +
E*(4*x^2 + 2*x^3))),x]
[Out]
E^x^2 + 16/(E*(2 + E)^2*x) + (4*(4 + E^2))/(E^2*(2 + E)^2*x) + 2*x + 4/(E^2*(2 + E + x)) - 8/((2 + E)^2*(2 + E
+ x)) - 16/(E^2*(2 + E)*(2 + E + x)) - (2 + E)/(2 + E + x) + (4*(4 + E^2))/(E^2*(2 + E)^2*(2 + E + x)) + (8*(
2 - E)*Log[x])/(E*(2 + E)^3) - (16*Log[x])/(E^2*(2 + E)^2) + (8*(4 + E^2)*Log[x])/(E^2*(2 + E)^3) - (8*(2 - E)
*Log[2 + E + x])/(E*(2 + E)^3) + (16*Log[2 + E + x])/(E^2*(2 + E)^2) - (8*(4 + E^2)*Log[2 + E + x])/(E^2*(2 +
E)^3)
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 27
Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
Rule 44
Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] && !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])
Rule 77
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
Rule 683
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && IGtQ[p, 0] && !(EqQ[m, 3] && NeQ[p, 1])
Rule 2209
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 37, normalized size = 1.48
Antiderivative was successfully verified.
[In]
Integrate[(-16 - 4*E^2 + E*(-16 - 8*x) - 16*x - 4*x^2 + E^2*(10*x^2 + 2*E^2*x^2 + 8*x^3 + 2*x^4 + E*(9*x^2 + 4
*x^3)) + E^(2 + x^2)*(8*x^3 + 2*E^2*x^3 + 8*x^4 + 2*x^5 + E*(8*x^3 + 4*x^4)))/(E^2*(4*x^2 + E^2*x^2 + 4*x^3 +
x^4 + E*(4*x^2 + 2*x^3))),x]
[Out]
(E^(2 + x^2) + 4/x + 2*E^2*x - (E^2*(2 + E))/(2 + E + x))/E^2
________________________________________________________________________________________
fricas [B] time = 0.63, size = 73, normalized size = 2.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^3*exp(1)^2+(4*x^4+8*x^3)*exp(1)+2*x^5+8*x^4+8*x^3)*exp(2)*exp(x^2)+(2*x^2*exp(1)^2+(4*x^3+9*x^
2)*exp(1)+2*x^4+8*x^3+10*x^2)*exp(2)-4*exp(1)^2+(-8*x-16)*exp(1)-4*x^2-16*x-16)/(x^2*exp(1)^2+(2*x^3+4*x^2)*ex
p(1)+x^4+4*x^3+4*x^2)/exp(2),x, algorithm="fricas")
[Out]
((2*x^2 - x)*e^3 + 2*(x^3 + 2*x^2 - x)*e^2 + (x^2 + x*e + 2*x)*e^(x^2 + 2) + 4*x + 4*e + 8)/(x*e^3 + (x^2 + 2*
x)*e^2)
________________________________________________________________________________________
giac [B] time = 0.32, size = 83, normalized size = 3.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^3*exp(1)^2+(4*x^4+8*x^3)*exp(1)+2*x^5+8*x^4+8*x^3)*exp(2)*exp(x^2)+(2*x^2*exp(1)^2+(4*x^3+9*x^
2)*exp(1)+2*x^4+8*x^3+10*x^2)*exp(2)-4*exp(1)^2+(-8*x-16)*exp(1)-4*x^2-16*x-16)/(x^2*exp(1)^2+(2*x^3+4*x^2)*ex
p(1)+x^4+4*x^3+4*x^2)/exp(2),x, algorithm="giac")
[Out]
(2*x^3*e^2 + 2*x^2*e^3 + 4*x^2*e^2 + x^2*e^(x^2 + 2) - x*e^3 - 2*x*e^2 + x*e^(x^2 + 3) + 2*x*e^(x^2 + 2) + 4*x
+ 4*e + 8)*e^(-2)/(x^2 + x*e + 2*x)
________________________________________________________________________________________
maple [A] time = 0.62, size = 40, normalized size = 1.60
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x^3*exp(1)^2+(4*x^4+8*x^3)*exp(1)+2*x^5+8*x^4+8*x^3)*exp(2)*exp(x^2)+(2*x^2*exp(1)^2+(4*x^3+9*x^2)*exp
(1)+2*x^4+8*x^3+10*x^2)*exp(2)-4*exp(1)^2+(-8*x-16)*exp(1)-4*x^2-16*x-16)/(x^2*exp(1)^2+(2*x^3+4*x^2)*exp(1)+x
^4+4*x^3+4*x^2)/exp(2),x,method=_RETURNVERBOSE)
[Out]
2*x+exp(-2)*((-exp(3)-2*exp(2)+4)*x+4*exp(1)+8)/(2+x+exp(1))/x+exp(x^2)
________________________________________________________________________________________
maxima [B] time = 0.93, size = 480, normalized size = 19.20
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^3*exp(1)^2+(4*x^4+8*x^3)*exp(1)+2*x^5+8*x^4+8*x^3)*exp(2)*exp(x^2)+(2*x^2*exp(1)^2+(4*x^3+9*x^
2)*exp(1)+2*x^4+8*x^3+10*x^2)*exp(2)-4*exp(1)^2+(-8*x-16)*exp(1)-4*x^2-16*x-16)/(x^2*exp(1)^2+(2*x^3+4*x^2)*ex
p(1)+x^4+4*x^3+4*x^2)/exp(2),x, algorithm="maxima")
[Out]
(4*((e + 2)/(x + e + 2) + log(x + e + 2))*e^3 - 2*(2*(e + 2)*log(x + e + 2) - x + (e^2 + 4*e + 4)/(x + e + 2))
*e^2 + 4*((2*x + e + 2)/(x^2*(e^2 + 4*e + 4) + x*(e^3 + 6*e^2 + 12*e + 8)) - 2*log(x + e + 2)/(e^3 + 6*e^2 + 1
2*e + 8) + 2*log(x)/(e^3 + 6*e^2 + 12*e + 8))*e^2 + 8*((e + 2)/(x + e + 2) + log(x + e + 2))*e^2 + 16*((2*x +
e + 2)/(x^2*(e^2 + 4*e + 4) + x*(e^3 + 6*e^2 + 12*e + 8)) - 2*log(x + e + 2)/(e^3 + 6*e^2 + 12*e + 8) + 2*log(
x)/(e^3 + 6*e^2 + 12*e + 8))*e + 8*(log(x + e + 2)/(e^2 + 4*e + 4) - log(x)/(e^2 + 4*e + 4) - 1/(x*(e + 2) + e
^2 + 4*e + 4))*e + 16*(2*x + e + 2)/(x^2*(e^2 + 4*e + 4) + x*(e^3 + 6*e^2 + 12*e + 8)) - 2*e^4/(x + e + 2) - 9
*e^3/(x + e + 2) - 10*e^2/(x + e + 2) - 32*log(x + e + 2)/(e^3 + 6*e^2 + 12*e + 8) + 16*log(x + e + 2)/(e^2 +
4*e + 4) + 32*log(x)/(e^3 + 6*e^2 + 12*e + 8) - 16*log(x)/(e^2 + 4*e + 4) - 16/(x*(e + 2) + e^2 + 4*e + 4) + 4
/(x + e + 2) + e^(x^2 + 2))*e^(-2)
________________________________________________________________________________________
mupad [B] time = 2.51, size = 44, normalized size = 1.76
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(-2)*(16*x + 4*exp(2) + 4*x^2 - exp(2)*(exp(1)*(9*x^2 + 4*x^3) + 2*x^2*exp(2) + 10*x^2 + 8*x^3 + 2*x^
4) + exp(1)*(8*x + 16) - exp(x^2)*exp(2)*(exp(1)*(8*x^3 + 4*x^4) + 2*x^3*exp(2) + 8*x^3 + 8*x^4 + 2*x^5) + 16)
)/(exp(1)*(4*x^2 + 2*x^3) + x^2*exp(2) + 4*x^2 + 4*x^3 + x^4),x)
[Out]
2*x + exp(x^2) + (4*exp(1) - x*(2*exp(2) + exp(3) - 4) + 8)/(x*(2*exp(2) + exp(3)) + x^2*exp(2))
________________________________________________________________________________________
sympy [A] time = 1.02, size = 42, normalized size = 1.68
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x**3*exp(1)**2+(4*x**4+8*x**3)*exp(1)+2*x**5+8*x**4+8*x**3)*exp(2)*exp(x**2)+(2*x**2*exp(1)**2+(
4*x**3+9*x**2)*exp(1)+2*x**4+8*x**3+10*x**2)*exp(2)-4*exp(1)**2+(-8*x-16)*exp(1)-4*x**2-16*x-16)/(x**2*exp(1)*
*2+(2*x**3+4*x**2)*exp(1)+x**4+4*x**3+4*x**2)/exp(2),x)
[Out]
2*x + exp(x**2) + (x*(-exp(3) - 2*exp(2) + 4) + 8 + 4*E)/(x**2*exp(2) + x*(2*exp(2) + exp(3)))
________________________________________________________________________________________