3.33.1 164e2+e(168x)16x4x2+e2(10x2+2e2x2+8x3+2x4+e(9x2+4x3))+e2+x2(8x3+2e2x3+8x4+2x5+e(8x3+4x4))e2(4x2+e2x2+4x3+x4+e(4x2+2x3))dx

Optimal. Leaf size=25 ex2+4e2x+2x+x2+e+x

________________________________________________________________________________________

Rubi [B]  time = 1.07, antiderivative size = 213, normalized size of antiderivative = 8.52, number of steps used = 15, number of rules used = 9, integrand size = 148, number of rulesintegrand size = 0.061, Rules used = {6, 12, 6741, 27, 6742, 2209, 44, 77, 683} ex2+2x+4(4+e2)e2(2+e)2(x+e+2)2+ex+e+216e2(2+e)(x+e+2)8(2+e)2(x+e+2)+4e2(x+e+2)+4(4+e2)e2(2+e)2x+16e(2+e)2x+8(4+e2)log(x)e2(2+e)316log(x)e2(2+e)2+8(2e)log(x)e(2+e)38(4+e2)log(x+e+2)e2(2+e)3+16log(x+e+2)e2(2+e)28(2e)log(x+e+2)e(2+e)3

Antiderivative was successfully verified.

[In]

Int[(-16 - 4*E^2 + E*(-16 - 8*x) - 16*x - 4*x^2 + E^2*(10*x^2 + 2*E^2*x^2 + 8*x^3 + 2*x^4 + E*(9*x^2 + 4*x^3))
 + E^(2 + x^2)*(8*x^3 + 2*E^2*x^3 + 8*x^4 + 2*x^5 + E*(8*x^3 + 4*x^4)))/(E^2*(4*x^2 + E^2*x^2 + 4*x^3 + x^4 +
E*(4*x^2 + 2*x^3))),x]

[Out]

E^x^2 + 16/(E*(2 + E)^2*x) + (4*(4 + E^2))/(E^2*(2 + E)^2*x) + 2*x + 4/(E^2*(2 + E + x)) - 8/((2 + E)^2*(2 + E
 + x)) - 16/(E^2*(2 + E)*(2 + E + x)) - (2 + E)/(2 + E + x) + (4*(4 + E^2))/(E^2*(2 + E)^2*(2 + E + x)) + (8*(
2 - E)*Log[x])/(E*(2 + E)^3) - (16*Log[x])/(E^2*(2 + E)^2) + (8*(4 + E^2)*Log[x])/(E^2*(2 + E)^3) - (8*(2 - E)
*Log[2 + E + x])/(E*(2 + E)^3) + (16*Log[2 + E + x])/(E^2*(2 + E)^2) - (8*(4 + E^2)*Log[2 + E + x])/(E^2*(2 +
E)^3)

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 683

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
 e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && IGtQ[p, 0] &&  !(EqQ[m, 3] && NeQ[p, 1])

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=164e2+e(168x)16x4x2+e2(10x2+2e2x2+8x3+2x4+e(9x2+4x3))+e2+x2(8x3+2e2x3+8x4+2x5+e(8x3+4x4))e2((4+e2)x2+4x3+x4+e(4x2+2x3))dx=164e2+e(168x)16x4x2+e2(10x2+2e2x2+8x3+2x4+e(9x2+4x3))+e2+x2(8x3+2e2x3+8x4+2x5+e(8x3+4x4))(4+e2)x2+4x3+x4+e(4x2+2x3)dxe2=16(1+e24)+e(168x)16x4x2+e2(10x2+2e2x2+8x3+2x4+e(9x2+4x3))+e2+x2(8x3+2e2x3+8x4+2x5+e(8x3+4x4))x2((2+e)2+2(2+e)x+x2)dxe2=16(1+e24)+e(168x)16x4x2+e2(10x2+2e2x2+8x3+2x4+e(9x2+4x3))+e2+x2(8x3+2e2x3+8x4+2x5+e(8x3+4x4))x2(2+e+x)2dxe2=(2e2+x2x4(2+e+x)24(4+e2)x2(2+e+x)216x(2+e+x)28e(2+x)x2(2+e+x)2+e2((2+e)(5+2e)+4(2+e)x+2x2)(2+e+x)2)dxe2=4e2(2+e+x)+2e2+x2xdxe2161x(2+e+x)2dxe282+xx2(2+e+x)2dxe(4(4+e2))1x2(2+e+x)2dxe2+(2+e)(5+2e)+4(2+e)x+2x2(2+e+x)2dx=ex2+4e2(2+e+x)16(1(2+e)2x1(2+e)(2+e+x)21(2+e)2(2+e+x))dxe28(2(2+e)2x2+2+e(2+e)3xe(2+e)2(2+e+x)2+2e(2+e)3(2+e+x))dxe(4(4+e2))(1(2+e)2x22(2+e)3x+1(2+e)2(2+e+x)2+2(2+e)3(2+e+x))dxe2+(2+2+e(2+e+x)2)dx=ex2+16e(2+e)2x+4(4+e2)e2(2+e)2x+2x+4e2(2+e+x)8(2+e)2(2+e+x)16e2(2+e)(2+e+x)2+e2+e+x+4(4+e2)e2(2+e)2(2+e+x)+8(2e)log(x)e(2+e)316log(x)e2(2+e)2+8(4+e2)log(x)e2(2+e)38(2e)log(2+e+x)e(2+e)3+16log(2+e+x)e2(2+e)28(4+e2)log(2+e+x)e2(2+e)3

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 37, normalized size = 1.48 e2+x2+4x+2e2xe2(2+e)2+e+xe2

Antiderivative was successfully verified.

[In]

Integrate[(-16 - 4*E^2 + E*(-16 - 8*x) - 16*x - 4*x^2 + E^2*(10*x^2 + 2*E^2*x^2 + 8*x^3 + 2*x^4 + E*(9*x^2 + 4
*x^3)) + E^(2 + x^2)*(8*x^3 + 2*E^2*x^3 + 8*x^4 + 2*x^5 + E*(8*x^3 + 4*x^4)))/(E^2*(4*x^2 + E^2*x^2 + 4*x^3 +
x^4 + E*(4*x^2 + 2*x^3))),x]

[Out]

(E^(2 + x^2) + 4/x + 2*E^2*x - (E^2*(2 + E))/(2 + E + x))/E^2

________________________________________________________________________________________

fricas [B]  time = 0.63, size = 73, normalized size = 2.92 (2x2x)e3+2(x3+2x2x)e2+(x2+xe+2x)e(x2+2)+4x+4e+8xe3+(x2+2x)e2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(1)^2+(4*x^4+8*x^3)*exp(1)+2*x^5+8*x^4+8*x^3)*exp(2)*exp(x^2)+(2*x^2*exp(1)^2+(4*x^3+9*x^
2)*exp(1)+2*x^4+8*x^3+10*x^2)*exp(2)-4*exp(1)^2+(-8*x-16)*exp(1)-4*x^2-16*x-16)/(x^2*exp(1)^2+(2*x^3+4*x^2)*ex
p(1)+x^4+4*x^3+4*x^2)/exp(2),x, algorithm="fricas")

[Out]

((2*x^2 - x)*e^3 + 2*(x^3 + 2*x^2 - x)*e^2 + (x^2 + x*e + 2*x)*e^(x^2 + 2) + 4*x + 4*e + 8)/(x*e^3 + (x^2 + 2*
x)*e^2)

________________________________________________________________________________________

giac [B]  time = 0.32, size = 83, normalized size = 3.32 (2x3e2+2x2e3+4x2e2+x2e(x2+2)xe32xe2+xe(x2+3)+2xe(x2+2)+4x+4e+8)e(2)x2+xe+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(1)^2+(4*x^4+8*x^3)*exp(1)+2*x^5+8*x^4+8*x^3)*exp(2)*exp(x^2)+(2*x^2*exp(1)^2+(4*x^3+9*x^
2)*exp(1)+2*x^4+8*x^3+10*x^2)*exp(2)-4*exp(1)^2+(-8*x-16)*exp(1)-4*x^2-16*x-16)/(x^2*exp(1)^2+(2*x^3+4*x^2)*ex
p(1)+x^4+4*x^3+4*x^2)/exp(2),x, algorithm="giac")

[Out]

(2*x^3*e^2 + 2*x^2*e^3 + 4*x^2*e^2 + x^2*e^(x^2 + 2) - x*e^3 - 2*x*e^2 + x*e^(x^2 + 3) + 2*x*e^(x^2 + 2) + 4*x
 + 4*e + 8)*e^(-2)/(x^2 + x*e + 2*x)

________________________________________________________________________________________

maple [A]  time = 0.62, size = 40, normalized size = 1.60




method result size



risch 2x+e2((e32e2+4)x+4e+8)(2+x+e)x+ex2 40
norman x2ex2(2(e2)2+9ee2+10e24)e2x+x(e+2)ex2+2x3+4(e+2)e2x(2+x+e) 73



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^3*exp(1)^2+(4*x^4+8*x^3)*exp(1)+2*x^5+8*x^4+8*x^3)*exp(2)*exp(x^2)+(2*x^2*exp(1)^2+(4*x^3+9*x^2)*exp
(1)+2*x^4+8*x^3+10*x^2)*exp(2)-4*exp(1)^2+(-8*x-16)*exp(1)-4*x^2-16*x-16)/(x^2*exp(1)^2+(2*x^3+4*x^2)*exp(1)+x
^4+4*x^3+4*x^2)/exp(2),x,method=_RETURNVERBOSE)

[Out]

2*x+exp(-2)*((-exp(3)-2*exp(2)+4)*x+4*exp(1)+8)/(2+x+exp(1))/x+exp(x^2)

________________________________________________________________________________________

maxima [B]  time = 0.93, size = 480, normalized size = 19.20 (4(e+2x+e+2+log(x+e+2))e32(2(e+2)log(x+e+2)x+e2+4e+4x+e+2)e2+4(2x+e+2x2(e2+4e+4)+x(e3+6e2+12e+8)2log(x+e+2)e3+6e2+12e+8+2log(x)e3+6e2+12e+8)e2+8(e+2x+e+2+log(x+e+2))e2+16(2x+e+2x2(e2+4e+4)+x(e3+6e2+12e+8)2log(x+e+2)e3+6e2+12e+8+2log(x)e3+6e2+12e+8)e+8(log(x+e+2)e2+4e+4log(x)e2+4e+41x(e+2)+e2+4e+4)e+16(2x+e+2)x2(e2+4e+4)+x(e3+6e2+12e+8)2e4x+e+29e3x+e+210e2x+e+232log(x+e+2)e3+6e2+12e+8+16log(x+e+2)e2+4e+4+32log(x)e3+6e2+12e+816log(x)e2+4e+416x(e+2)+e2+4e+4+4x+e+2+e(x2+2))e(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(1)^2+(4*x^4+8*x^3)*exp(1)+2*x^5+8*x^4+8*x^3)*exp(2)*exp(x^2)+(2*x^2*exp(1)^2+(4*x^3+9*x^
2)*exp(1)+2*x^4+8*x^3+10*x^2)*exp(2)-4*exp(1)^2+(-8*x-16)*exp(1)-4*x^2-16*x-16)/(x^2*exp(1)^2+(2*x^3+4*x^2)*ex
p(1)+x^4+4*x^3+4*x^2)/exp(2),x, algorithm="maxima")

[Out]

(4*((e + 2)/(x + e + 2) + log(x + e + 2))*e^3 - 2*(2*(e + 2)*log(x + e + 2) - x + (e^2 + 4*e + 4)/(x + e + 2))
*e^2 + 4*((2*x + e + 2)/(x^2*(e^2 + 4*e + 4) + x*(e^3 + 6*e^2 + 12*e + 8)) - 2*log(x + e + 2)/(e^3 + 6*e^2 + 1
2*e + 8) + 2*log(x)/(e^3 + 6*e^2 + 12*e + 8))*e^2 + 8*((e + 2)/(x + e + 2) + log(x + e + 2))*e^2 + 16*((2*x +
e + 2)/(x^2*(e^2 + 4*e + 4) + x*(e^3 + 6*e^2 + 12*e + 8)) - 2*log(x + e + 2)/(e^3 + 6*e^2 + 12*e + 8) + 2*log(
x)/(e^3 + 6*e^2 + 12*e + 8))*e + 8*(log(x + e + 2)/(e^2 + 4*e + 4) - log(x)/(e^2 + 4*e + 4) - 1/(x*(e + 2) + e
^2 + 4*e + 4))*e + 16*(2*x + e + 2)/(x^2*(e^2 + 4*e + 4) + x*(e^3 + 6*e^2 + 12*e + 8)) - 2*e^4/(x + e + 2) - 9
*e^3/(x + e + 2) - 10*e^2/(x + e + 2) - 32*log(x + e + 2)/(e^3 + 6*e^2 + 12*e + 8) + 16*log(x + e + 2)/(e^2 +
4*e + 4) + 32*log(x)/(e^3 + 6*e^2 + 12*e + 8) - 16*log(x)/(e^2 + 4*e + 4) - 16/(x*(e + 2) + e^2 + 4*e + 4) + 4
/(x + e + 2) + e^(x^2 + 2))*e^(-2)

________________________________________________________________________________________

mupad [B]  time = 2.51, size = 44, normalized size = 1.76 2x+ex2+4ex(2e2+e34)+8e2x2+(2e2+e3)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-2)*(16*x + 4*exp(2) + 4*x^2 - exp(2)*(exp(1)*(9*x^2 + 4*x^3) + 2*x^2*exp(2) + 10*x^2 + 8*x^3 + 2*x^
4) + exp(1)*(8*x + 16) - exp(x^2)*exp(2)*(exp(1)*(8*x^3 + 4*x^4) + 2*x^3*exp(2) + 8*x^3 + 8*x^4 + 2*x^5) + 16)
)/(exp(1)*(4*x^2 + 2*x^3) + x^2*exp(2) + 4*x^2 + 4*x^3 + x^4),x)

[Out]

2*x + exp(x^2) + (4*exp(1) - x*(2*exp(2) + exp(3) - 4) + 8)/(x*(2*exp(2) + exp(3)) + x^2*exp(2))

________________________________________________________________________________________

sympy [A]  time = 1.02, size = 42, normalized size = 1.68 2x+ex2+x(e32e2+4)+8+4ex2e2+x(2e2+e3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**3*exp(1)**2+(4*x**4+8*x**3)*exp(1)+2*x**5+8*x**4+8*x**3)*exp(2)*exp(x**2)+(2*x**2*exp(1)**2+(
4*x**3+9*x**2)*exp(1)+2*x**4+8*x**3+10*x**2)*exp(2)-4*exp(1)**2+(-8*x-16)*exp(1)-4*x**2-16*x-16)/(x**2*exp(1)*
*2+(2*x**3+4*x**2)*exp(1)+x**4+4*x**3+4*x**2)/exp(2),x)

[Out]

2*x + exp(x**2) + (x*(-exp(3) - 2*exp(2) + 4) + 8 + 4*E)/(x**2*exp(2) + x*(2*exp(2) + exp(3)))

________________________________________________________________________________________