3.33.2
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [F] time = 6.30, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(16 + 8*x + E^(5*x^2)*(4 + 4*x - 40*x^2 - 40*x^3) + (4 + 4*x)*Log[(1 + 2*x + x^2)/(9*x^4)])/(E^(10*x^2)*(1
+ x) + E^(5*x^2)*(2 + 2*x)*Log[(1 + 2*x + x^2)/(9*x^4)] + (1 + x)*Log[(1 + 2*x + x^2)/(9*x^4)]^2),x]
[Out]
8*Defer[Int][(E^(5*x^2) + Log[(1 + x)^2/(9*x^4)])^(-2), x] + 8*Defer[Int][1/((1 + x)*(E^(5*x^2) + Log[(1 + x)^
2/(9*x^4)])^2), x] + 40*Defer[Int][(x^2*Log[(1 + x)^2/(9*x^4)])/(E^(5*x^2) + Log[(1 + x)^2/(9*x^4)])^2, x] + 4
*Defer[Int][(E^(5*x^2) + Log[(1 + x)^2/(9*x^4)])^(-1), x] - 40*Defer[Int][x^2/(E^(5*x^2) + Log[(1 + x)^2/(9*x^
4)]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.60, size = 26, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(16 + 8*x + E^(5*x^2)*(4 + 4*x - 40*x^2 - 40*x^3) + (4 + 4*x)*Log[(1 + 2*x + x^2)/(9*x^4)])/(E^(10*x
^2)*(1 + x) + E^(5*x^2)*(2 + 2*x)*Log[(1 + 2*x + x^2)/(9*x^4)] + (1 + x)*Log[(1 + 2*x + x^2)/(9*x^4)]^2),x]
[Out]
(4*x)/(E^(5*x^2) + Log[(1 + x)^2/(9*x^4)])
________________________________________________________________________________________
fricas [A] time = 0.57, size = 26, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x+4)*log(1/9*(x^2+2*x+1)/x^4)+(-40*x^3-40*x^2+4*x+4)*exp(5*x^2)+8*x+16)/((x+1)*log(1/9*(x^2+2*x+
1)/x^4)^2+(2*x+2)*exp(5*x^2)*log(1/9*(x^2+2*x+1)/x^4)+(x+1)*exp(5*x^2)^2),x, algorithm="fricas")
[Out]
4*x/(e^(5*x^2) + log(1/9*(x^2 + 2*x + 1)/x^4))
________________________________________________________________________________________
giac [A] time = 0.83, size = 26, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x+4)*log(1/9*(x^2+2*x+1)/x^4)+(-40*x^3-40*x^2+4*x+4)*exp(5*x^2)+8*x+16)/((x+1)*log(1/9*(x^2+2*x+
1)/x^4)^2+(2*x+2)*exp(5*x^2)*log(1/9*(x^2+2*x+1)/x^4)+(x+1)*exp(5*x^2)^2),x, algorithm="giac")
[Out]
4*x/(e^(5*x^2) + log(1/9*(x^2 + 2*x + 1)/x^4))
________________________________________________________________________________________
maple [C] time = 0.26, size = 366, normalized size = 14.08
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*x+4)*ln(1/9*(x^2+2*x+1)/x^4)+(-40*x^3-40*x^2+4*x+4)*exp(5*x^2)+8*x+16)/((x+1)*ln(1/9*(x^2+2*x+1)/x^4)^
2+(2*x+2)*exp(5*x^2)*ln(1/9*(x^2+2*x+1)/x^4)+(x+1)*exp(5*x^2)^2),x,method=_RETURNVERBOSE)
[Out]
-8*I*x/(-Pi*csgn(I/x^4*(x+1)^2)^3+Pi*csgn(I*x^4)^3+Pi*csgn(I*x^3)^3-Pi*csgn(I*(x+1)^2)^3-Pi*csgn(I/x^4)*csgn(I
*(x+1)^2)*csgn(I/x^4*(x+1)^2)+Pi*csgn(I*x)*csgn(I*x^3)*csgn(I*x^4)+Pi*csgn(I*x)*csgn(I*x^2)*csgn(I*x^3)+8*I*ln
(x)+4*I*ln(3)-2*I*exp(5*x^2)-4*I*ln(x+1)-Pi*csgn(I*x)*csgn(I*x^3)^2-Pi*csgn(I*x^2)*csgn(I*x^3)^2-Pi*csgn(I*x)*
csgn(I*x^4)^2-Pi*csgn(I*x^3)*csgn(I*x^4)^2+Pi*csgn(I/x^4)*csgn(I/x^4*(x+1)^2)^2+Pi*csgn(I*(x+1)^2)*csgn(I/x^4*
(x+1)^2)^2-Pi*csgn(I*(x+1))^2*csgn(I*(x+1)^2)+2*Pi*csgn(I*(x+1))*csgn(I*(x+1)^2)^2+Pi*csgn(I*x^2)^3+Pi*csgn(I*
x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2)
________________________________________________________________________________________
maxima [A] time = 0.60, size = 26, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x+4)*log(1/9*(x^2+2*x+1)/x^4)+(-40*x^3-40*x^2+4*x+4)*exp(5*x^2)+8*x+16)/((x+1)*log(1/9*(x^2+2*x+
1)/x^4)^2+(2*x+2)*exp(5*x^2)*log(1/9*(x^2+2*x+1)/x^4)+(x+1)*exp(5*x^2)^2),x, algorithm="maxima")
[Out]
4*x/(e^(5*x^2) - 2*log(3) + 2*log(x + 1) - 4*log(x))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((8*x + exp(5*x^2)*(4*x - 40*x^2 - 40*x^3 + 4) + log(((2*x)/9 + x^2/9 + 1/9)/x^4)*(4*x + 4) + 16)/(log(((2*
x)/9 + x^2/9 + 1/9)/x^4)^2*(x + 1) + exp(10*x^2)*(x + 1) + log(((2*x)/9 + x^2/9 + 1/9)/x^4)*exp(5*x^2)*(2*x +
2)),x)
[Out]
int((8*x + exp(5*x^2)*(4*x - 40*x^2 - 40*x^3 + 4) + log(((2*x)/9 + x^2/9 + 1/9)/x^4)*(4*x + 4) + 16)/(log(((2*
x)/9 + x^2/9 + 1/9)/x^4)^2*(x + 1) + exp(10*x^2)*(x + 1) + log(((2*x)/9 + x^2/9 + 1/9)/x^4)*exp(5*x^2)*(2*x +
2)), x)
________________________________________________________________________________________
sympy [A] time = 0.39, size = 27, normalized size = 1.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x+4)*ln(1/9*(x**2+2*x+1)/x**4)+(-40*x**3-40*x**2+4*x+4)*exp(5*x**2)+8*x+16)/((x+1)*ln(1/9*(x**2+
2*x+1)/x**4)**2+(2*x+2)*exp(5*x**2)*ln(1/9*(x**2+2*x+1)/x**4)+(x+1)*exp(5*x**2)**2),x)
[Out]
4*x/(exp(5*x**2) + log((x**2/9 + 2*x/9 + 1/9)/x**4))
________________________________________________________________________________________