3.33.2 16+8x+e5x2(4+4x40x240x3)+(4+4x)log(1+2x+x29x4)e10x2(1+x)+e5x2(2+2x)log(1+2x+x29x4)+(1+x)log2(1+2x+x29x4)dx

Optimal. Leaf size=26 4xe5x2+log((1+x)29x4)

________________________________________________________________________________________

Rubi [F]  time = 6.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 16+8x+e5x2(4+4x40x240x3)+(4+4x)log(1+2x+x29x4)e10x2(1+x)+e5x2(2+2x)log(1+2x+x29x4)+(1+x)log2(1+2x+x29x4)dx

Verification is not applicable to the result.

[In]

Int[(16 + 8*x + E^(5*x^2)*(4 + 4*x - 40*x^2 - 40*x^3) + (4 + 4*x)*Log[(1 + 2*x + x^2)/(9*x^4)])/(E^(10*x^2)*(1
 + x) + E^(5*x^2)*(2 + 2*x)*Log[(1 + 2*x + x^2)/(9*x^4)] + (1 + x)*Log[(1 + 2*x + x^2)/(9*x^4)]^2),x]

[Out]

8*Defer[Int][(E^(5*x^2) + Log[(1 + x)^2/(9*x^4)])^(-2), x] + 8*Defer[Int][1/((1 + x)*(E^(5*x^2) + Log[(1 + x)^
2/(9*x^4)])^2), x] + 40*Defer[Int][(x^2*Log[(1 + x)^2/(9*x^4)])/(E^(5*x^2) + Log[(1 + x)^2/(9*x^4)])^2, x] + 4
*Defer[Int][(E^(5*x^2) + Log[(1 + x)^2/(9*x^4)])^(-1), x] - 40*Defer[Int][x^2/(E^(5*x^2) + Log[(1 + x)^2/(9*x^
4)]), x]

Rubi steps

integral=4(2(2+x)+e5x2(1+x10x210x3)+(1+x)log((1+x)29x4))(1+x)(e5x2+log((1+x)29x4))2dx=42(2+x)+e5x2(1+x10x210x3)+(1+x)log((1+x)29x4)(1+x)(e5x2+log((1+x)29x4))2dx=4(1+10x2e5x2+log((1+x)29x4)+2(2+x+5x2log((1+x)29x4)+5x3log((1+x)29x4))(1+x)(e5x2+log((1+x)29x4))2)dx=(41+10x2e5x2+log((1+x)29x4)dx)+82+x+5x2log((1+x)29x4)+5x3log((1+x)29x4)(1+x)(e5x2+log((1+x)29x4))2dx=(4(1e5x2+log((1+x)29x4)+10x2e5x2+log((1+x)29x4))dx)+82+x+5x2(1+x)log((1+x)29x4)(1+x)(e5x2+log((1+x)29x4))2dx=41e5x2+log((1+x)29x4)dx+8(2(1+x)(e5x2+log((1+x)29x4))2+x(1+x)(e5x2+log((1+x)29x4))2+5x2log((1+x)29x4)(1+x)(e5x2+log((1+x)29x4))2+5x3log((1+x)29x4)(1+x)(e5x2+log((1+x)29x4))2)dx40x2e5x2+log((1+x)29x4)dx=41e5x2+log((1+x)29x4)dx+8x(1+x)(e5x2+log((1+x)29x4))2dx+161(1+x)(e5x2+log((1+x)29x4))2dx+40x2log((1+x)29x4)(1+x)(e5x2+log((1+x)29x4))2dx+40x3log((1+x)29x4)(1+x)(e5x2+log((1+x)29x4))2dx40x2e5x2+log((1+x)29x4)dx=41e5x2+log((1+x)29x4)dx+8(1(e5x2+log((1+x)29x4))21(1+x)(e5x2+log((1+x)29x4))2)dx+161(1+x)(e5x2+log((1+x)29x4))2dx40x2e5x2+log((1+x)29x4)dx+40(log((1+x)29x4)(e5x2+log((1+x)29x4))2xlog((1+x)29x4)(e5x2+log((1+x)29x4))2+x2log((1+x)29x4)(e5x2+log((1+x)29x4))2log((1+x)29x4)(1+x)(e5x2+log((1+x)29x4))2)dx+40(log((1+x)29x4)(e5x2+log((1+x)29x4))2+xlog((1+x)29x4)(e5x2+log((1+x)29x4))2+log((1+x)29x4)(1+x)(e5x2+log((1+x)29x4))2)dx=41e5x2+log((1+x)29x4)dx+81(e5x2+log((1+x)29x4))2dx81(1+x)(e5x2+log((1+x)29x4))2dx+161(1+x)(e5x2+log((1+x)29x4))2dx+40x2log((1+x)29x4)(e5x2+log((1+x)29x4))2dx40x2e5x2+log((1+x)29x4)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.60, size = 26, normalized size = 1.00 4xe5x2+log((1+x)29x4)

Antiderivative was successfully verified.

[In]

Integrate[(16 + 8*x + E^(5*x^2)*(4 + 4*x - 40*x^2 - 40*x^3) + (4 + 4*x)*Log[(1 + 2*x + x^2)/(9*x^4)])/(E^(10*x
^2)*(1 + x) + E^(5*x^2)*(2 + 2*x)*Log[(1 + 2*x + x^2)/(9*x^4)] + (1 + x)*Log[(1 + 2*x + x^2)/(9*x^4)]^2),x]

[Out]

(4*x)/(E^(5*x^2) + Log[(1 + x)^2/(9*x^4)])

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 26, normalized size = 1.00 4xe(5x2)+log(x2+2x+19x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+4)*log(1/9*(x^2+2*x+1)/x^4)+(-40*x^3-40*x^2+4*x+4)*exp(5*x^2)+8*x+16)/((x+1)*log(1/9*(x^2+2*x+
1)/x^4)^2+(2*x+2)*exp(5*x^2)*log(1/9*(x^2+2*x+1)/x^4)+(x+1)*exp(5*x^2)^2),x, algorithm="fricas")

[Out]

4*x/(e^(5*x^2) + log(1/9*(x^2 + 2*x + 1)/x^4))

________________________________________________________________________________________

giac [A]  time = 0.83, size = 26, normalized size = 1.00 4xe(5x2)+log(x2+2x+19x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+4)*log(1/9*(x^2+2*x+1)/x^4)+(-40*x^3-40*x^2+4*x+4)*exp(5*x^2)+8*x+16)/((x+1)*log(1/9*(x^2+2*x+
1)/x^4)^2+(2*x+2)*exp(5*x^2)*log(1/9*(x^2+2*x+1)/x^4)+(x+1)*exp(5*x^2)^2),x, algorithm="giac")

[Out]

4*x/(e^(5*x^2) + log(1/9*(x^2 + 2*x + 1)/x^4))

________________________________________________________________________________________

maple [C]  time = 0.26, size = 366, normalized size = 14.08




method result size



risch 8ixπcsgn(i(x+1)2x4)3+πcsgn(ix4)3+πcsgn(ix3)3πcsgn(i(x+1)2)3πcsgn(ix4)csgn(i(x+1)2)csgn(i(x+1)2x4)+πcsgn(ix)csgn(ix3)csgn(ix4)+πcsgn(ix)csgn(ix2)csgn(ix3)+8iln(x)+4iln(3)2ie5x24iln(x+1)πcsgn(ix)csgn(ix3)2πcsgn(ix2)csgn(ix3)2πcsgn(ix)csgn(ix4)2πcsgn(ix3)csgn(ix4)2+πcsgn(ix4)csgn(i(x+1)2x4)2+πcsgn(i(x+1)2)csgn(i(x+1)2x4)2πcsgn(i(x+1))2csgn(i(x+1)2)+2πcsgn(i(x+1))csgn(i(x+1)2)2+πcsgn(ix2)3+πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2 366



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*x+4)*ln(1/9*(x^2+2*x+1)/x^4)+(-40*x^3-40*x^2+4*x+4)*exp(5*x^2)+8*x+16)/((x+1)*ln(1/9*(x^2+2*x+1)/x^4)^
2+(2*x+2)*exp(5*x^2)*ln(1/9*(x^2+2*x+1)/x^4)+(x+1)*exp(5*x^2)^2),x,method=_RETURNVERBOSE)

[Out]

-8*I*x/(-Pi*csgn(I/x^4*(x+1)^2)^3+Pi*csgn(I*x^4)^3+Pi*csgn(I*x^3)^3-Pi*csgn(I*(x+1)^2)^3-Pi*csgn(I/x^4)*csgn(I
*(x+1)^2)*csgn(I/x^4*(x+1)^2)+Pi*csgn(I*x)*csgn(I*x^3)*csgn(I*x^4)+Pi*csgn(I*x)*csgn(I*x^2)*csgn(I*x^3)+8*I*ln
(x)+4*I*ln(3)-2*I*exp(5*x^2)-4*I*ln(x+1)-Pi*csgn(I*x)*csgn(I*x^3)^2-Pi*csgn(I*x^2)*csgn(I*x^3)^2-Pi*csgn(I*x)*
csgn(I*x^4)^2-Pi*csgn(I*x^3)*csgn(I*x^4)^2+Pi*csgn(I/x^4)*csgn(I/x^4*(x+1)^2)^2+Pi*csgn(I*(x+1)^2)*csgn(I/x^4*
(x+1)^2)^2-Pi*csgn(I*(x+1))^2*csgn(I*(x+1)^2)+2*Pi*csgn(I*(x+1))*csgn(I*(x+1)^2)^2+Pi*csgn(I*x^2)^3+Pi*csgn(I*
x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2)

________________________________________________________________________________________

maxima [A]  time = 0.60, size = 26, normalized size = 1.00 4xe(5x2)2log(3)+2log(x+1)4log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+4)*log(1/9*(x^2+2*x+1)/x^4)+(-40*x^3-40*x^2+4*x+4)*exp(5*x^2)+8*x+16)/((x+1)*log(1/9*(x^2+2*x+
1)/x^4)^2+(2*x+2)*exp(5*x^2)*log(1/9*(x^2+2*x+1)/x^4)+(x+1)*exp(5*x^2)^2),x, algorithm="maxima")

[Out]

4*x/(e^(5*x^2) - 2*log(3) + 2*log(x + 1) - 4*log(x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 8x+e5x2(40x340x2+4x+4)+ln(x29+2x9+19x4)(4x+4)+16(x+1)ln(x29+2x9+19x4)2+e5x2(2x+2)ln(x29+2x9+19x4)+e10x2(x+1)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((8*x + exp(5*x^2)*(4*x - 40*x^2 - 40*x^3 + 4) + log(((2*x)/9 + x^2/9 + 1/9)/x^4)*(4*x + 4) + 16)/(log(((2*
x)/9 + x^2/9 + 1/9)/x^4)^2*(x + 1) + exp(10*x^2)*(x + 1) + log(((2*x)/9 + x^2/9 + 1/9)/x^4)*exp(5*x^2)*(2*x +
2)),x)

[Out]

int((8*x + exp(5*x^2)*(4*x - 40*x^2 - 40*x^3 + 4) + log(((2*x)/9 + x^2/9 + 1/9)/x^4)*(4*x + 4) + 16)/(log(((2*
x)/9 + x^2/9 + 1/9)/x^4)^2*(x + 1) + exp(10*x^2)*(x + 1) + log(((2*x)/9 + x^2/9 + 1/9)/x^4)*exp(5*x^2)*(2*x +
2)), x)

________________________________________________________________________________________

sympy [A]  time = 0.39, size = 27, normalized size = 1.04 4xe5x2+log(x29+2x9+19x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x+4)*ln(1/9*(x**2+2*x+1)/x**4)+(-40*x**3-40*x**2+4*x+4)*exp(5*x**2)+8*x+16)/((x+1)*ln(1/9*(x**2+
2*x+1)/x**4)**2+(2*x+2)*exp(5*x**2)*ln(1/9*(x**2+2*x+1)/x**4)+(x+1)*exp(5*x**2)**2),x)

[Out]

4*x/(exp(5*x**2) + log((x**2/9 + 2*x/9 + 1/9)/x**4))

________________________________________________________________________________________