Optimal. Leaf size=26 \[ \frac {4 x}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16+8 x+e^{5 x^2} \left (4+4 x-40 x^2-40 x^3\right )+(4+4 x) \log \left (\frac {1+2 x+x^2}{9 x^4}\right )}{e^{10 x^2} (1+x)+e^{5 x^2} (2+2 x) \log \left (\frac {1+2 x+x^2}{9 x^4}\right )+(1+x) \log ^2\left (\frac {1+2 x+x^2}{9 x^4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (2 (2+x)+e^{5 x^2} \left (1+x-10 x^2-10 x^3\right )+(1+x) \log \left (\frac {(1+x)^2}{9 x^4}\right )\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx\\ &=4 \int \frac {2 (2+x)+e^{5 x^2} \left (1+x-10 x^2-10 x^3\right )+(1+x) \log \left (\frac {(1+x)^2}{9 x^4}\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx\\ &=4 \int \left (-\frac {-1+10 x^2}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )}+\frac {2 \left (2+x+5 x^2 \log \left (\frac {(1+x)^2}{9 x^4}\right )+5 x^3 \log \left (\frac {(1+x)^2}{9 x^4}\right )\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {-1+10 x^2}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \, dx\right )+8 \int \frac {2+x+5 x^2 \log \left (\frac {(1+x)^2}{9 x^4}\right )+5 x^3 \log \left (\frac {(1+x)^2}{9 x^4}\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx\\ &=-\left (4 \int \left (-\frac {1}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )}+\frac {10 x^2}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )}\right ) \, dx\right )+8 \int \frac {2+x+5 x^2 (1+x) \log \left (\frac {(1+x)^2}{9 x^4}\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx\\ &=4 \int \frac {1}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \, dx+8 \int \left (\frac {2}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}+\frac {x}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}+\frac {5 x^2 \log \left (\frac {(1+x)^2}{9 x^4}\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}+\frac {5 x^3 \log \left (\frac {(1+x)^2}{9 x^4}\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}\right ) \, dx-40 \int \frac {x^2}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \, dx\\ &=4 \int \frac {1}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \, dx+8 \int \frac {x}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx+16 \int \frac {1}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx+40 \int \frac {x^2 \log \left (\frac {(1+x)^2}{9 x^4}\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx+40 \int \frac {x^3 \log \left (\frac {(1+x)^2}{9 x^4}\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx-40 \int \frac {x^2}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \, dx\\ &=4 \int \frac {1}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \, dx+8 \int \left (\frac {1}{\left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}-\frac {1}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}\right ) \, dx+16 \int \frac {1}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx-40 \int \frac {x^2}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \, dx+40 \int \left (\frac {\log \left (\frac {(1+x)^2}{9 x^4}\right )}{\left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}-\frac {x \log \left (\frac {(1+x)^2}{9 x^4}\right )}{\left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}+\frac {x^2 \log \left (\frac {(1+x)^2}{9 x^4}\right )}{\left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}-\frac {\log \left (\frac {(1+x)^2}{9 x^4}\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}\right ) \, dx+40 \int \left (-\frac {\log \left (\frac {(1+x)^2}{9 x^4}\right )}{\left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}+\frac {x \log \left (\frac {(1+x)^2}{9 x^4}\right )}{\left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}+\frac {\log \left (\frac {(1+x)^2}{9 x^4}\right )}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2}\right ) \, dx\\ &=4 \int \frac {1}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \, dx+8 \int \frac {1}{\left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx-8 \int \frac {1}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx+16 \int \frac {1}{(1+x) \left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx+40 \int \frac {x^2 \log \left (\frac {(1+x)^2}{9 x^4}\right )}{\left (e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )\right )^2} \, dx-40 \int \frac {x^2}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.60, size = 26, normalized size = 1.00 \begin {gather*} \frac {4 x}{e^{5 x^2}+\log \left (\frac {(1+x)^2}{9 x^4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 26, normalized size = 1.00 \begin {gather*} \frac {4 \, x}{e^{\left (5 \, x^{2}\right )} + \log \left (\frac {x^{2} + 2 \, x + 1}{9 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.83, size = 26, normalized size = 1.00 \begin {gather*} \frac {4 \, x}{e^{\left (5 \, x^{2}\right )} + \log \left (\frac {x^{2} + 2 \, x + 1}{9 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.26, size = 366, normalized size = 14.08
method | result | size |
risch | \(-\frac {8 i x}{-\pi \mathrm {csgn}\left (\frac {i \left (x +1\right )^{2}}{x^{4}}\right )^{3}+\pi \mathrm {csgn}\left (i x^{4}\right )^{3}+\pi \mathrm {csgn}\left (i x^{3}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x +1\right )^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i}{x^{4}}\right ) \mathrm {csgn}\left (i \left (x +1\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )^{2}}{x^{4}}\right )+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+8 i \ln \relax (x )+4 i \ln \relax (3)-2 i {\mathrm e}^{5 x^{2}}-4 i \ln \left (x +1\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-\pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i}{x^{4}}\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )^{2}}{x^{4}}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (x +1\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x +1\right )^{2}}{x^{4}}\right )^{2}-\pi \mathrm {csgn}\left (i \left (x +1\right )\right )^{2} \mathrm {csgn}\left (i \left (x +1\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x +1\right )\right ) \mathrm {csgn}\left (i \left (x +1\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}}\) | \(366\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 26, normalized size = 1.00 \begin {gather*} \frac {4 \, x}{e^{\left (5 \, x^{2}\right )} - 2 \, \log \relax (3) + 2 \, \log \left (x + 1\right ) - 4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {8\,x+{\mathrm {e}}^{5\,x^2}\,\left (-40\,x^3-40\,x^2+4\,x+4\right )+\ln \left (\frac {\frac {x^2}{9}+\frac {2\,x}{9}+\frac {1}{9}}{x^4}\right )\,\left (4\,x+4\right )+16}{\left (x+1\right )\,{\ln \left (\frac {\frac {x^2}{9}+\frac {2\,x}{9}+\frac {1}{9}}{x^4}\right )}^2+{\mathrm {e}}^{5\,x^2}\,\left (2\,x+2\right )\,\ln \left (\frac {\frac {x^2}{9}+\frac {2\,x}{9}+\frac {1}{9}}{x^4}\right )+{\mathrm {e}}^{10\,x^2}\,\left (x+1\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 27, normalized size = 1.04 \begin {gather*} \frac {4 x}{e^{5 x^{2}} + \log {\left (\frac {\frac {x^{2}}{9} + \frac {2 x}{9} + \frac {1}{9}}{x^{4}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________