3.33.4 eex(2x3exx4+e5+ex+x2+xlog2(x)(48x28xlog(x)4xlog2(x)))4x2dx

Optimal. Leaf size=32 e5+x(x+log2(x))x+14eexx2

________________________________________________________________________________________

Rubi [A]  time = 1.07, antiderivative size = 64, normalized size of antiderivative = 2.00, number of steps used = 5, number of rules used = 3, integrand size = 64, number of rulesintegrand size = 0.047, Rules used = {12, 6742, 2288} 14eexx2ex2+xlog2(x)+5(2x2+xlog2(x)+2xlog(x))x2(2x+log2(x)+2log(x))

Antiderivative was successfully verified.

[In]

Int[(2*x^3 - E^x*x^4 + E^(5 + E^x + x^2 + x*Log[x]^2)*(4 - 8*x^2 - 8*x*Log[x] - 4*x*Log[x]^2))/(4*E^E^x*x^2),x
]

[Out]

x^2/(4*E^E^x) - (E^(5 + x^2 + x*Log[x]^2)*(2*x^2 + 2*x*Log[x] + x*Log[x]^2))/(x^2*(2*x + 2*Log[x] + Log[x]^2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=14eex(2x3exx4+e5+ex+x2+xlog2(x)(48x28xlog(x)4xlog2(x)))x2dx=14(eexx(2+exx)4e5+x2+xlog2(x)(1+2x2+2xlog(x)+xlog2(x))x2)dx=(14eexx(2+exx)dx)e5+x2+xlog2(x)(1+2x2+2xlog(x)+xlog2(x))x2dx=14eexx2e5+x2+xlog2(x)(2x2+2xlog(x)+xlog2(x))x2(2x+2log(x)+log2(x))

________________________________________________________________________________________

Mathematica [A]  time = 0.45, size = 34, normalized size = 1.06 14(4e5+x2+xlog2(x)x+eexx2)

Antiderivative was successfully verified.

[In]

Integrate[(2*x^3 - E^x*x^4 + E^(5 + E^x + x^2 + x*Log[x]^2)*(4 - 8*x^2 - 8*x*Log[x] - 4*x*Log[x]^2))/(4*E^E^x*
x^2),x]

[Out]

((-4*E^(5 + x^2 + x*Log[x]^2))/x + x^2/E^E^x)/4

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 29, normalized size = 0.91 x3e(ex)4e(xlog(x)2+x2+5)4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-4*x*log(x)^2-8*x*log(x)-8*x^2+4)*exp(exp(x))*exp(x*log(x)^2+x^2+5)-exp(x)*x^4+2*x^3)/exp(exp(
x))/x^2,x, algorithm="fricas")

[Out]

1/4*(x^3*e^(-e^x) - 4*e^(x*log(x)^2 + x^2 + 5))/x

________________________________________________________________________________________

giac [A]  time = 0.21, size = 36, normalized size = 1.12 (x3e(xex)4e(xlog(x)2+x2+x+5))e(x)4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-4*x*log(x)^2-8*x*log(x)-8*x^2+4)*exp(exp(x))*exp(x*log(x)^2+x^2+5)-exp(x)*x^4+2*x^3)/exp(exp(
x))/x^2,x, algorithm="giac")

[Out]

1/4*(x^3*e^(x - e^x) - 4*e^(x*log(x)^2 + x^2 + x + 5))*e^(-x)/x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 29, normalized size = 0.91




method result size



risch x2eex4exln(x)2+x2+5x 29



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*((-4*x*ln(x)^2-8*x*ln(x)-8*x^2+4)*exp(exp(x))*exp(x*ln(x)^2+x^2+5)-exp(x)*x^4+2*x^3)/exp(exp(x))/x^2,x
,method=_RETURNVERBOSE)

[Out]

1/4*x^2*exp(-exp(x))-exp(x*ln(x)^2+x^2+5)/x

________________________________________________________________________________________

maxima [A]  time = 0.61, size = 29, normalized size = 0.91 x3e(ex)4e(xlog(x)2+x2+5)4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-4*x*log(x)^2-8*x*log(x)-8*x^2+4)*exp(exp(x))*exp(x*log(x)^2+x^2+5)-exp(x)*x^4+2*x^3)/exp(exp(
x))/x^2,x, algorithm="maxima")

[Out]

1/4*(x^3*e^(-e^x) - 4*e^(x*log(x)^2 + x^2 + 5))/x

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 eex(x4ex4x32+eexex2+xln(x)2+5(8x2+4xln(x)2+8xln(x)4)4)x2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-exp(x))*((x^4*exp(x))/4 - x^3/2 + (exp(exp(x))*exp(x*log(x)^2 + x^2 + 5)*(4*x*log(x)^2 + 8*x*log(x)
 + 8*x^2 - 4))/4))/x^2,x)

[Out]

int(-(exp(-exp(x))*((x^4*exp(x))/4 - x^3/2 + (exp(exp(x))*exp(x*log(x)^2 + x^2 + 5)*(4*x*log(x)^2 + 8*x*log(x)
 + 8*x^2 - 4))/4))/x^2, x)

________________________________________________________________________________________

sympy [A]  time = 0.89, size = 24, normalized size = 0.75 x2eex4ex2+xlog(x)2+5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-4*x*ln(x)**2-8*x*ln(x)-8*x**2+4)*exp(exp(x))*exp(x*ln(x)**2+x**2+5)-exp(x)*x**4+2*x**3)/exp(e
xp(x))/x**2,x)

[Out]

x**2*exp(-exp(x))/4 - exp(x**2 + x*log(x)**2 + 5)/x

________________________________________________________________________________________