3.33.5 e4+ex(1616x)+e4+ex(ex(16x16x2)+4exxlog(x4))log(44x+log(x4))4x4x2+xlog(x4)dx

Optimal. Leaf size=21 4e4+exlog(44x+log(x4))

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 80, number of rulesintegrand size = 0.038, Rules used = {6688, 12, 2288} 4eex4log(log(x4)4x+4)

Antiderivative was successfully verified.

[In]

Int[(E^(-4 + E^x)*(16 - 16*x) + E^(-4 + E^x)*(E^x*(16*x - 16*x^2) + 4*E^x*x*Log[-x^4])*Log[4 - 4*x + Log[-x^4]
])/(4*x - 4*x^2 + x*Log[-x^4]),x]

[Out]

4*E^(-4 + E^x)*Log[4 - 4*x + Log[-x^4]]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=4e4+ex(44x4x4x2+xlog(x4)+exlog(44x+log(x4)))dx=4e4+ex(44x4x4x2+xlog(x4)+exlog(44x+log(x4)))dx=4e4+exlog(44x+log(x4))

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 21, normalized size = 1.00 4e4+exlog(44x+log(x4))

Antiderivative was successfully verified.

[In]

Integrate[(E^(-4 + E^x)*(16 - 16*x) + E^(-4 + E^x)*(E^x*(16*x - 16*x^2) + 4*E^x*x*Log[-x^4])*Log[4 - 4*x + Log
[-x^4]])/(4*x - 4*x^2 + x*Log[-x^4]),x]

[Out]

4*E^(-4 + E^x)*Log[4 - 4*x + Log[-x^4]]

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 19, normalized size = 0.90 4e(ex4)log(4x+log(x4)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x*exp(x)*log(-x^4)+(-16*x^2+16*x)*exp(x))*exp(exp(x)-4)*log(log(-x^4)-4*x+4)+(-16*x+16)*exp(exp(
x)-4))/(x*log(-x^4)-4*x^2+4*x),x, algorithm="fricas")

[Out]

4*e^(e^x - 4)*log(-4*x + log(-x^4) + 4)

________________________________________________________________________________________

giac [A]  time = 0.36, size = 19, normalized size = 0.90 4e(ex4)log(4x+log(x4)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x*exp(x)*log(-x^4)+(-16*x^2+16*x)*exp(x))*exp(exp(x)-4)*log(log(-x^4)-4*x+4)+(-16*x+16)*exp(exp(
x)-4))/(x*log(-x^4)-4*x^2+4*x),x, algorithm="giac")

[Out]

4*e^(e^x - 4)*log(-4*x + log(-x^4) + 4)

________________________________________________________________________________________

maple [C]  time = 0.19, size = 158, normalized size = 7.52




method result size



risch 4eex4ln(iπ+4ln(x)iπcsgn(ix2)(csgn(ix2)+csgn(ix))22iπcsgn(ix3)(csgn(ix3)+csgn(ix2))(csgn(ix3)+csgn(ix))2iπcsgn(ix4)(csgn(ix4)+csgn(ix3))(csgn(ix4)+csgn(ix))2+iπcsgn(ix4)2(csgn(ix4)1)4x+4) 158



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*x*exp(x)*ln(-x^4)+(-16*x^2+16*x)*exp(x))*exp(exp(x)-4)*ln(ln(-x^4)-4*x+4)+(-16*x+16)*exp(exp(x)-4))/(x
*ln(-x^4)-4*x^2+4*x),x,method=_RETURNVERBOSE)

[Out]

4*exp(exp(x)-4)*ln(I*Pi+4*ln(x)-1/2*I*Pi*csgn(I*x^2)*(-csgn(I*x^2)+csgn(I*x))^2-1/2*I*Pi*csgn(I*x^3)*(-csgn(I*
x^3)+csgn(I*x^2))*(-csgn(I*x^3)+csgn(I*x))-1/2*I*Pi*csgn(I*x^4)*(-csgn(I*x^4)+csgn(I*x^3))*(-csgn(I*x^4)+csgn(
I*x))+I*Pi*csgn(I*x^4)^2*(csgn(I*x^4)-1)-4*x+4)

________________________________________________________________________________________

maxima [C]  time = 0.47, size = 20, normalized size = 0.95 4e(ex4)log(iπ4x+4log(x)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x*exp(x)*log(-x^4)+(-16*x^2+16*x)*exp(x))*exp(exp(x)-4)*log(log(-x^4)-4*x+4)+(-16*x+16)*exp(exp(
x)-4))/(x*log(-x^4)-4*x^2+4*x),x, algorithm="maxima")

[Out]

4*e^(e^x - 4)*log(I*pi - 4*x + 4*log(x) + 4)

________________________________________________________________________________________

mupad [B]  time = 2.16, size = 19, normalized size = 0.90 4ln(ln(x4)4x+4)eex4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(exp(x) - 4)*(16*x - 16) - log(log(-x^4) - 4*x + 4)*exp(exp(x) - 4)*(exp(x)*(16*x - 16*x^2) + 4*x*exp
(x)*log(-x^4)))/(4*x + x*log(-x^4) - 4*x^2),x)

[Out]

4*log(log(-x^4) - 4*x + 4)*exp(exp(x) - 4)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x*exp(x)*ln(-x**4)+(-16*x**2+16*x)*exp(x))*exp(exp(x)-4)*ln(ln(-x**4)-4*x+4)+(-16*x+16)*exp(exp(
x)-4))/(x*ln(-x**4)-4*x**2+4*x),x)

[Out]

Timed out

________________________________________________________________________________________