Optimal. Leaf size=21 \[ 4 e^{-4+e^x} \log \left (4-4 x+\log \left (-x^4\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {6688, 12, 2288} \begin {gather*} 4 e^{e^x-4} \log \left (\log \left (-x^4\right )-4 x+4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 4 e^{-4+e^x} \left (\frac {4-4 x}{4 x-4 x^2+x \log \left (-x^4\right )}+e^x \log \left (4-4 x+\log \left (-x^4\right )\right )\right ) \, dx\\ &=4 \int e^{-4+e^x} \left (\frac {4-4 x}{4 x-4 x^2+x \log \left (-x^4\right )}+e^x \log \left (4-4 x+\log \left (-x^4\right )\right )\right ) \, dx\\ &=4 e^{-4+e^x} \log \left (4-4 x+\log \left (-x^4\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 21, normalized size = 1.00 \begin {gather*} 4 e^{-4+e^x} \log \left (4-4 x+\log \left (-x^4\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 19, normalized size = 0.90 \begin {gather*} 4 \, e^{\left (e^{x} - 4\right )} \log \left (-4 \, x + \log \left (-x^{4}\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 19, normalized size = 0.90 \begin {gather*} 4 \, e^{\left (e^{x} - 4\right )} \log \left (-4 \, x + \log \left (-x^{4}\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.19, size = 158, normalized size = 7.52
method | result | size |
risch | \(4 \,{\mathrm e}^{{\mathrm e}^{x}-4} \ln \left (i \pi +4 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}+i \pi \mathrm {csgn}\left (i x^{4}\right )^{2} \left (\mathrm {csgn}\left (i x^{4}\right )-1\right )-4 x +4\right )\) | \(158\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.47, size = 20, normalized size = 0.95 \begin {gather*} 4 \, e^{\left (e^{x} - 4\right )} \log \left (i \, \pi - 4 \, x + 4 \, \log \relax (x) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 19, normalized size = 0.90 \begin {gather*} 4\,\ln \left (\ln \left (-x^4\right )-4\,x+4\right )\,{\mathrm {e}}^{{\mathrm {e}}^x-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________