3.33.7 e(3+3x)25e3x2+10e4x2log(8e1xx)+e5x2log2(8e1xx)dx

Optimal. Leaf size=22 3e3(5+elog(8e1xx))

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 57, number of rulesintegrand size = 0.053, Rules used = {12, 6688, 6686} 3e3(elog(8e1xx)+5)

Antiderivative was successfully verified.

[In]

Int[(E*(3 + 3*x))/(25*E^3*x^2 + 10*E^4*x^2*Log[(8*E^x^(-1))/x] + E^5*x^2*Log[(8*E^x^(-1))/x]^2),x]

[Out]

3/(E^3*(5 + E*Log[(8*E^x^(-1))/x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=e3+3x25e3x2+10e4x2log(8e1xx)+e5x2log2(8e1xx)dx=e3(1+x)e3x2(5+elog(8e1xx))2dx=31+xx2(5+elog(8e1xx))2dxe2=3e3(5+elog(8e1xx))

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 22, normalized size = 1.00 3e3(5+elog(8e1xx))

Antiderivative was successfully verified.

[In]

Integrate[(E*(3 + 3*x))/(25*E^3*x^2 + 10*E^4*x^2*Log[(8*E^x^(-1))/x] + E^5*x^2*Log[(8*E^x^(-1))/x]^2),x]

[Out]

3/(E^3*(5 + E*Log[(8*E^x^(-1))/x]))

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 22, normalized size = 1.00 3e4log(8e1xx)+5e3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x+3)*exp(1)/(x^2*exp(1)^2*exp(3)*log(8*exp(1/x)/x)^2+10*x^2*exp(1)*exp(3)*log(8*exp(1/x)/x)+25*x^
2*exp(3)),x, algorithm="fricas")

[Out]

3/(e^4*log(8*e^(1/x)/x) + 5*e^3)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 29, normalized size = 1.32 3xe3xe5log(2)xe5log(x)+5xe4+e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x+3)*exp(1)/(x^2*exp(1)^2*exp(3)*log(8*exp(1/x)/x)^2+10*x^2*exp(1)*exp(3)*log(8*exp(1/x)/x)+25*x^
2*exp(3)),x, algorithm="giac")

[Out]

3*x*e/(3*x*e^5*log(2) - x*e^5*log(x) + 5*x*e^4 + e^5)

________________________________________________________________________________________

maple [A]  time = 0.52, size = 36, normalized size = 1.64




method result size



norman 3e3eln(8e1xx)5(5+ln(8e1xx)e) 36
default 3e3xxeln(x)ex(ln(8e1xx)1x+ln(x))e5x 47
risch 6ie3πecsgn(ix)csgn(ie1x)csgn(ie1xx)πecsgn(ix)csgn(ie1xx)2πecsgn(ie1x)csgn(ie1xx)2+πecsgn(ie1xx)3+6ieln(2)2ieln(x)+2ieln(e1x)+10i 133



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x+3)*exp(1)/(x^2*exp(1)^2*exp(3)*ln(8*exp(1/x)/x)^2+10*x^2*exp(1)*exp(3)*ln(8*exp(1/x)/x)+25*x^2*exp(3)
),x,method=_RETURNVERBOSE)

[Out]

-3/5/exp(3)*exp(1)*ln(8*exp(1/x)/x)/(5+ln(8*exp(1/x)/x)*exp(1))

________________________________________________________________________________________

maxima [A]  time = 0.58, size = 32, normalized size = 1.45 3xexe5log(x)(3e5log(2)+5e4)xe5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x+3)*exp(1)/(x^2*exp(1)^2*exp(3)*log(8*exp(1/x)/x)^2+10*x^2*exp(1)*exp(3)*log(8*exp(1/x)/x)+25*x^
2*exp(3)),x, algorithm="maxima")

[Out]

-3*x*e/(x*e^5*log(x) - (3*e^5*log(2) + 5*e^4)*x - e^5)

________________________________________________________________________________________

mupad [B]  time = 2.09, size = 20, normalized size = 0.91 3e45e1+ln(8x)+1x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(1)*(3*x + 3))/(25*x^2*exp(3) + 10*x^2*exp(4)*log((8*exp(1/x))/x) + x^2*exp(5)*log((8*exp(1/x))/x)^2),
x)

[Out]

(3*exp(-4))/(5*exp(-1) + log(8/x) + 1/x)

________________________________________________________________________________________

sympy [A]  time = 0.31, size = 19, normalized size = 0.86 3e4log(8e1xx)+5e3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x+3)*exp(1)/(x**2*exp(1)**2*exp(3)*ln(8*exp(1/x)/x)**2+10*x**2*exp(1)*exp(3)*ln(8*exp(1/x)/x)+25*
x**2*exp(3)),x)

[Out]

3/(exp(4)*log(8*exp(1/x)/x) + 5*exp(3))

________________________________________________________________________________________