3.33.8 4x2+e4e48x+5x24x(12e415x2)12x2dx

Optimal. Leaf size=25 e2e4x+5x4+x3

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 48, number of rulesintegrand size = 0.062, Rules used = {12, 14, 6706} x3e5x4e4x2

Antiderivative was successfully verified.

[In]

Int[(4*x^2 + E^((-4*E^4 - 8*x + 5*x^2)/(4*x))*(-12*E^4 - 15*x^2))/(12*x^2),x]

[Out]

-E^(-2 - E^4/x + (5*x)/4) + x/3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=1124x2+e4e48x+5x24x(12e415x2)x2dx=112(43e2e4x+5x4(4e4+5x2)x2)dx=x314e2e4x+5x4(4e4+5x2)x2dx=e2e4x+5x4+x3

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 25, normalized size = 1.00 e2e4x+5x4+x3

Antiderivative was successfully verified.

[In]

Integrate[(4*x^2 + E^((-4*E^4 - 8*x + 5*x^2)/(4*x))*(-12*E^4 - 15*x^2))/(12*x^2),x]

[Out]

-E^(-2 - E^4/x + (5*x)/4) + x/3

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 25, normalized size = 1.00 13xe(5x28x4e44x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/12*((-12*exp(4)-15*x^2)*exp(1/4*(-4*exp(4)+5*x^2-8*x)/x)+4*x^2)/x^2,x, algorithm="fricas")

[Out]

1/3*x - e^(1/4*(5*x^2 - 8*x - 4*e^4)/x)

________________________________________________________________________________________

giac [A]  time = 0.44, size = 30, normalized size = 1.20 13(xe43e(5x2+8x4e44x))e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/12*((-12*exp(4)-15*x^2)*exp(1/4*(-4*exp(4)+5*x^2-8*x)/x)+4*x^2)/x^2,x, algorithm="giac")

[Out]

1/3*(x*e^4 - 3*e^(1/4*(5*x^2 + 8*x - 4*e^4)/x))*e^(-4)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 26, normalized size = 1.04




method result size



risch x3e5x2+4e4+8x4x 26
norman x23xe4e4+5x28x4xx 33



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/12*((-12*exp(4)-15*x^2)*exp(1/4*(-4*exp(4)+5*x^2-8*x)/x)+4*x^2)/x^2,x,method=_RETURNVERBOSE)

[Out]

1/3*x-exp(-1/4*(-5*x^2+4*exp(4)+8*x)/x)

________________________________________________________________________________________

maxima [A]  time = 1.26, size = 19, normalized size = 0.76 13xe(54xe4x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/12*((-12*exp(4)-15*x^2)*exp(1/4*(-4*exp(4)+5*x^2-8*x)/x)+4*x^2)/x^2,x, algorithm="maxima")

[Out]

1/3*x - e^(5/4*x - e^4/x - 2)

________________________________________________________________________________________

mupad [B]  time = 1.95, size = 19, normalized size = 0.76 x3e5x4e4x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((exp(-(2*x + exp(4) - (5*x^2)/4)/x)*(12*exp(4) + 15*x^2))/12 - x^2/3)/x^2,x)

[Out]

x/3 - exp((5*x)/4 - exp(4)/x - 2)

________________________________________________________________________________________

sympy [A]  time = 0.20, size = 19, normalized size = 0.76 x3e5x242xe4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/12*((-12*exp(4)-15*x**2)*exp(1/4*(-4*exp(4)+5*x**2-8*x)/x)+4*x**2)/x**2,x)

[Out]

x/3 - exp((5*x**2/4 - 2*x - exp(4))/x)

________________________________________________________________________________________