3.33.9 e4x(10x+17x24x3)log2(3)dx

Optimal. Leaf size=20 1+e4x(5x)x2log2(3)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 29, normalized size of antiderivative = 1.45, number of steps used = 13, number of rules used = 5, integrand size = 24, number of rulesintegrand size = 0.208, Rules used = {12, 1594, 2196, 2176, 2194} 5e4xx2log2(3)e4xx3log2(3)

Antiderivative was successfully verified.

[In]

Int[E^(4*x)*(10*x + 17*x^2 - 4*x^3)*Log[3]^2,x]

[Out]

5*E^(4*x)*x^2*Log[3]^2 - E^(4*x)*x^3*Log[3]^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rubi steps

integral=log2(3)e4x(10x+17x24x3)dx=log2(3)e4xx(10+17x4x2)dx=log2(3)(10e4xx+17e4xx24e4xx3)dx=((4log2(3))e4xx3dx)+(10log2(3))e4xxdx+(17log2(3))e4xx2dx=52e4xxlog2(3)+174e4xx2log2(3)e4xx3log2(3)12(5log2(3))e4xdx+(3log2(3))e4xx2dx12(17log2(3))e4xxdx=58e4xlog2(3)+38e4xxlog2(3)+5e4xx2log2(3)e4xx3log2(3)12(3log2(3))e4xxdx+18(17log2(3))e4xdx=332e4xlog2(3)+5e4xx2log2(3)e4xx3log2(3)+18(3log2(3))e4xdx=5e4xx2log2(3)e4xx3log2(3)

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 17, normalized size = 0.85 e4x(5+x)x2log2(3)

Antiderivative was successfully verified.

[In]

Integrate[E^(4*x)*(10*x + 17*x^2 - 4*x^3)*Log[3]^2,x]

[Out]

-(E^(4*x)*(-5 + x)*x^2*Log[3]^2)

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 19, normalized size = 0.95 (x35x2)e(4x)log(3)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^3+17*x^2+10*x)*log(3)^2*exp(x)^4,x, algorithm="fricas")

[Out]

-(x^3 - 5*x^2)*e^(4*x)*log(3)^2

________________________________________________________________________________________

giac [A]  time = 0.17, size = 19, normalized size = 0.95 (x35x2)e(4x)log(3)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^3+17*x^2+10*x)*log(3)^2*exp(x)^4,x, algorithm="giac")

[Out]

-(x^3 - 5*x^2)*e^(4*x)*log(3)^2

________________________________________________________________________________________

maple [A]  time = 0.04, size = 17, normalized size = 0.85




method result size



gosper e4xln(3)2x2(x5) 17
risch ln(3)2(x3+5x2)e4x 21
default ln(3)2(5x2e4xx3e4x) 25
norman 5x2ln(3)2e4xx3ln(3)2e4x 28
meijerg ln(3)2(6(256x3+192x296x+24)e4x4)6417ln(3)2(2(48x224x+6)e4x3)64+5ln(3)2(1(8x+2)e4x2)8 74



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-4*x^3+17*x^2+10*x)*ln(3)^2*exp(x)^4,x,method=_RETURNVERBOSE)

[Out]

-exp(x)^4*ln(3)^2*x^2*(x-5)

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 54, normalized size = 2.70 132((32x324x2+12x3)e(4x)17(8x24x+1)e(4x)20(4x1)e(4x))log(3)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^3+17*x^2+10*x)*log(3)^2*exp(x)^4,x, algorithm="maxima")

[Out]

-1/32*((32*x^3 - 24*x^2 + 12*x - 3)*e^(4*x) - 17*(8*x^2 - 4*x + 1)*e^(4*x) - 20*(4*x - 1)*e^(4*x))*log(3)^2

________________________________________________________________________________________

mupad [B]  time = 1.85, size = 16, normalized size = 0.80 x2e4xln(3)2(x5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(4*x)*log(3)^2*(10*x + 17*x^2 - 4*x^3),x)

[Out]

-x^2*exp(4*x)*log(3)^2*(x - 5)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 22, normalized size = 1.10 (x3log(3)2+5x2log(3)2)e4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x**3+17*x**2+10*x)*ln(3)**2*exp(x)**4,x)

[Out]

(-x**3*log(3)**2 + 5*x**2*log(3)**2)*exp(4*x)

________________________________________________________________________________________