Optimal. Leaf size=26 \[ x+\frac {-1+\frac {e^{e^x x^2}}{x}}{4 \log (\log (5))} \]
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 55, normalized size of antiderivative = 2.12, number of steps used = 4, number of rules used = 3, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {12, 14, 2288} \begin {gather*} \frac {e^{e^x x^2} \left (e^x x^3+2 e^x x^2\right )}{4 \left (e^x x^2+2 e^x x\right ) x^2 \log (\log (5))}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{e^x x^2} \left (-1+e^x x^2 (2+x)\right )+4 x^2 \log (\log (5))}{x^2} \, dx}{4 \log (\log (5))}\\ &=\frac {\int \left (\frac {e^{e^x x^2} \left (-1+2 e^x x^2+e^x x^3\right )}{x^2}+4 \log (\log (5))\right ) \, dx}{4 \log (\log (5))}\\ &=x+\frac {\int \frac {e^{e^x x^2} \left (-1+2 e^x x^2+e^x x^3\right )}{x^2} \, dx}{4 \log (\log (5))}\\ &=x+\frac {e^{e^x x^2} \left (2 e^x x^2+e^x x^3\right )}{4 x^2 \left (2 e^x x+e^x x^2\right ) \log (\log (5))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 23, normalized size = 0.88 \begin {gather*} x+\frac {e^{e^x x^2}}{4 x \log (\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 27, normalized size = 1.04 \begin {gather*} \frac {4 \, x^{2} \log \left (\log \relax (5)\right ) + e^{\left (e^{\left (x + \log \left (x^{2}\right )\right )}\right )}}{4 \, x \log \left (\log \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, x^{2} \log \left (\log \relax (5)\right ) + {\left ({\left (x + 2\right )} e^{\left (x + \log \left (x^{2}\right )\right )} - 1\right )} e^{\left (e^{\left (x + \log \left (x^{2}\right )\right )}\right )}}{4 \, x^{2} \log \left (\log \relax (5)\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 20, normalized size = 0.77
method | result | size |
risch | \(x +\frac {{\mathrm e}^{{\mathrm e}^{x} x^{2}}}{4 \ln \left (\ln \relax (5)\right ) x}\) | \(20\) |
norman | \(\frac {x^{2}+\frac {{\mathrm e}^{{\mathrm e}^{\ln \left (x^{2}\right )+x}}}{4 \ln \left (\ln \relax (5)\right )}}{x}\) | \(24\) |
default | \(\frac {4 \ln \left (\ln \relax (5)\right ) x^{2}+{\mathrm e}^{{\mathrm e}^{\ln \left (x^{2}\right )+x}}}{4 \ln \left (\ln \relax (5)\right ) x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 25, normalized size = 0.96 \begin {gather*} \frac {4 \, x \log \left (\log \relax (5)\right ) + \frac {e^{\left (x^{2} e^{x}\right )}}{x}}{4 \, \log \left (\log \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.97, size = 19, normalized size = 0.73 \begin {gather*} x+\frac {{\mathrm {e}}^{x^2\,{\mathrm {e}}^x}}{4\,x\,\ln \left (\ln \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.65 \begin {gather*} x + \frac {e^{x^{2} e^{x}}}{4 x \log {\left (\log {\relax (5 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________