3.33.12 64+ex4256x432xdx

Optimal. Leaf size=25 log(e2ex4256x23log(4))

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 16, normalized size of antiderivative = 0.64, number of steps used = 4, number of rules used = 3, integrand size = 22, number of rulesintegrand size = 0.136, Rules used = {12, 14, 2209} 2ex4256+2log(x)

Antiderivative was successfully verified.

[In]

Int[(64 + E^(x^4/256)*x^4)/(32*x),x]

[Out]

2*E^(x^4/256) + 2*Log[x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rubi steps

integral=13264+ex4256x4xdx=132(64x+ex4256x3)dx=2log(x)+132ex4256x3dx=2ex4256+2log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 16, normalized size = 0.64 2ex4256+2log(x)

Antiderivative was successfully verified.

[In]

Integrate[(64 + E^(x^4/256)*x^4)/(32*x),x]

[Out]

2*E^(x^4/256) + 2*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 13, normalized size = 0.52 2e(1256x4)+2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/32*(x^4*exp(1/256*x^4)+64)/x,x, algorithm="fricas")

[Out]

2*e^(1/256*x^4) + 2*log(x)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 17, normalized size = 0.68 2e(1256x4)+12log(1256x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/32*(x^4*exp(1/256*x^4)+64)/x,x, algorithm="giac")

[Out]

2*e^(1/256*x^4) + 1/2*log(1/256*x^4)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 14, normalized size = 0.56




method result size



default 2ex4256+2ln(x) 14
norman 2ex4256+2ln(x) 14
risch 2ex4256+2ln(x) 14



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/32*(x^4*exp(1/256*x^4)+64)/x,x,method=_RETURNVERBOSE)

[Out]

2*exp(1/256*x^4)+2*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 13, normalized size = 0.52 2e(1256x4)+2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/32*(x^4*exp(1/256*x^4)+64)/x,x, algorithm="maxima")

[Out]

2*e^(1/256*x^4) + 2*log(x)

________________________________________________________________________________________

mupad [B]  time = 1.90, size = 13, normalized size = 0.52 2ex4256+2ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^4*exp(x^4/256))/32 + 2)/x,x)

[Out]

2*exp(x^4/256) + 2*log(x)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 12, normalized size = 0.48 2ex4256+2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/32*(x**4*exp(1/256*x**4)+64)/x,x)

[Out]

2*exp(x**4/256) + 2*log(x)

________________________________________________________________________________________