3.33.14
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [F] time = 11.09, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(5 + 5*E^3*x + E^(36*E^4 - 24*E^2*x + 4*x^2)*(x + x^2 - 24*E^2*x^2 + 8*x^3) + 5*x*Log[x])/(5*E^3*x + E^(36
*E^4 - 24*E^2*x + 4*x^2)*x^2 + 5*x*Log[x]),x]
[Out]
(1 - 24*E^2)*x + 4*x^2 + Log[x] + 120*Defer[Int][E^(5 + 24*E^2*x)/(5*E^(3 + 24*E^2*x) + E^(36*E^4 + 4*x^2)*x +
5*E^(24*E^2*x)*Log[x]), x] + 5*(1 - E^3)*Defer[Int][E^(24*E^2*x)/(x*(5*E^(3 + 24*E^2*x) + E^(36*E^4 + 4*x^2)*
x + 5*E^(24*E^2*x)*Log[x])), x] - 40*Defer[Int][(E^(3 + 24*E^2*x)*x)/(5*E^(3 + 24*E^2*x) + E^(36*E^4 + 4*x^2)*
x + 5*E^(24*E^2*x)*Log[x]), x] + 120*Defer[Int][(E^(2 + 24*E^2*x)*Log[x])/(5*E^(3 + 24*E^2*x) + E^(36*E^4 + 4*
x^2)*x + 5*E^(24*E^2*x)*Log[x]), x] - 5*Defer[Int][(E^(24*E^2*x)*Log[x])/(x*(5*E^(3 + 24*E^2*x) + E^(36*E^4 +
4*x^2)*x + 5*E^(24*E^2*x)*Log[x])), x] - 40*Defer[Int][(E^(24*E^2*x)*x*Log[x])/(5*E^(3 + 24*E^2*x) + E^(36*E^4
+ 4*x^2)*x + 5*E^(24*E^2*x)*Log[x]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 34, normalized size = 1.17
Antiderivative was successfully verified.
[In]
Integrate[(5 + 5*E^3*x + E^(36*E^4 - 24*E^2*x + 4*x^2)*(x + x^2 - 24*E^2*x^2 + 8*x^3) + 5*x*Log[x])/(5*E^3*x +
E^(36*E^4 - 24*E^2*x + 4*x^2)*x^2 + 5*x*Log[x]),x]
[Out]
x + Log[5*E^3 + E^(36*E^4 - 24*E^2*x + 4*x^2)*x + 5*Log[x]]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 30, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((5*x*log(x)+(-24*x^2*exp(2)+8*x^3+x^2+x)*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)+5)/(5*x*log(x
)+x^2*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)),x, algorithm="fricas")
[Out]
x + log(x*e^(4*x^2 - 24*x*e^2 + 36*e^4) + 5*e^3 + 5*log(x))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((5*x*log(x)+(-24*x^2*exp(2)+8*x^3+x^2+x)*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)+5)/(5*x*log(x
)+x^2*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)),x, algorithm="giac")
[Out]
integrate((5*x*e^3 + (8*x^3 - 24*x^2*e^2 + x^2 + x)*e^(4*x^2 - 24*x*e^2 + 36*e^4) + 5*x*log(x) + 5)/(x^2*e^(4*
x^2 - 24*x*e^2 + 36*e^4) + 5*x*e^3 + 5*x*log(x)), x)
________________________________________________________________________________________
maple [A] time = 0.09, size = 28, normalized size = 0.97
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((5*x*ln(x)+(-24*x^2*exp(2)+8*x^3+x^2+x)*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)+5)/(5*x*ln(x)+x^2*ex
p(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)),x,method=_RETURNVERBOSE)
[Out]
x+ln(exp(3)+1/5*exp(36*exp(4)-24*exp(2)*x+4*x^2)*x+ln(x))
________________________________________________________________________________________
maxima [B] time = 0.47, size = 53, normalized size = 1.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((5*x*log(x)+(-24*x^2*exp(2)+8*x^3+x^2+x)*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)+5)/(5*x*log(x
)+x^2*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)),x, algorithm="maxima")
[Out]
-x*(24*e^2 - 1) + log(1/5*(x*e^(4*x^2 + 36*e^4) + 5*(e^3 + log(x))*e^(24*x*e^2))/(e^3 + log(x))) + log(e^3 + l
og(x))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((5*x*exp(3) + 5*x*log(x) + exp(36*exp(4) - 24*x*exp(2) + 4*x^2)*(x - 24*x^2*exp(2) + x^2 + 8*x^3) + 5)/(x^
2*exp(36*exp(4) - 24*x*exp(2) + 4*x^2) + 5*x*exp(3) + 5*x*log(x)),x)
[Out]
int((5*x*exp(3) + 5*x*log(x) + exp(36*exp(4) - 24*x*exp(2) + 4*x^2)*(x - 24*x^2*exp(2) + x^2 + 8*x^3) + 5)/(x^
2*exp(36*exp(4) - 24*x*exp(2) + 4*x^2) + 5*x*exp(3) + 5*x*log(x)), x)
________________________________________________________________________________________
sympy [A] time = 0.55, size = 36, normalized size = 1.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((5*x*ln(x)+(-24*x**2*exp(2)+8*x**3+x**2+x)*exp(36*exp(2)**2-24*exp(2)*x+4*x**2)+5*x*exp(3)+5)/(5*x*l
n(x)+x**2*exp(36*exp(2)**2-24*exp(2)*x+4*x**2)+5*x*exp(3)),x)
[Out]
x + log(x) + log(exp(4*x**2 - 24*x*exp(2) + 36*exp(4)) + (5*log(x) + 5*exp(3))/x)
________________________________________________________________________________________