3.33.14 5+5e3x+e36e424e2x+4x2(x+x224e2x2+8x3)+5xlog(x)5e3x+e36e424e2x+4x2x2+5xlog(x)dx

Optimal. Leaf size=29 x+log(e3+15e4(3e2x)2x+log(x))

________________________________________________________________________________________

Rubi [F]  time = 11.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 5+5e3x+e36e424e2x+4x2(x+x224e2x2+8x3)+5xlog(x)5e3x+e36e424e2x+4x2x2+5xlog(x)dx

Verification is not applicable to the result.

[In]

Int[(5 + 5*E^3*x + E^(36*E^4 - 24*E^2*x + 4*x^2)*(x + x^2 - 24*E^2*x^2 + 8*x^3) + 5*x*Log[x])/(5*E^3*x + E^(36
*E^4 - 24*E^2*x + 4*x^2)*x^2 + 5*x*Log[x]),x]

[Out]

(1 - 24*E^2)*x + 4*x^2 + Log[x] + 120*Defer[Int][E^(5 + 24*E^2*x)/(5*E^(3 + 24*E^2*x) + E^(36*E^4 + 4*x^2)*x +
 5*E^(24*E^2*x)*Log[x]), x] + 5*(1 - E^3)*Defer[Int][E^(24*E^2*x)/(x*(5*E^(3 + 24*E^2*x) + E^(36*E^4 + 4*x^2)*
x + 5*E^(24*E^2*x)*Log[x])), x] - 40*Defer[Int][(E^(3 + 24*E^2*x)*x)/(5*E^(3 + 24*E^2*x) + E^(36*E^4 + 4*x^2)*
x + 5*E^(24*E^2*x)*Log[x]), x] + 120*Defer[Int][(E^(2 + 24*E^2*x)*Log[x])/(5*E^(3 + 24*E^2*x) + E^(36*E^4 + 4*
x^2)*x + 5*E^(24*E^2*x)*Log[x]), x] - 5*Defer[Int][(E^(24*E^2*x)*Log[x])/(x*(5*E^(3 + 24*E^2*x) + E^(36*E^4 +
4*x^2)*x + 5*E^(24*E^2*x)*Log[x])), x] - 40*Defer[Int][(E^(24*E^2*x)*x*Log[x])/(5*E^(3 + 24*E^2*x) + E^(36*E^4
 + 4*x^2)*x + 5*E^(24*E^2*x)*Log[x]), x]

Rubi steps

integral=(1+(124e2)x+8x2x5e24e2x(1+e324e5x+8e3x2+log(x)24e2xlog(x)+8x2log(x))x(5e3+24e2x+e36e4+4x2x+5e24e2xlog(x)))dx=(5e24e2x(1+e324e5x+8e3x2+log(x)24e2xlog(x)+8x2log(x))x(5e3+24e2x+e36e4+4x2x+5e24e2xlog(x))dx)+1+(124e2)x+8x2xdx=(5(24e5+24e2x5e3+24e2x+e36e4+4x2x+5e24e2xlog(x)e24e2x(1e3)x(5e3+24e2x+e36e4+4x2x+5e24e2xlog(x))+8e3+24e2xx5e3+24e2x+e36e4+4x2x+5e24e2xlog(x)24e2+24e2xlog(x)5e3+24e2x+e36e4+4x2x+5e24e2xlog(x)+e24e2xlog(x)x(5e3+24e2x+e36e4+4x2x+5e24e2xlog(x))+8e24e2xxlog(x)5e3+24e2x+e36e4+4x2x+5e24e2xlog(x))dx)+(124e2+1x+8x)dx=(124e2)x+4x2+log(x)5e24e2xlog(x)x(5e3+24e2x+e36e4+4x2x+5e24e2xlog(x))dx40e3+24e2xx5e3+24e2x+e36e4+4x2x+5e24e2xlog(x)dx40e24e2xxlog(x)5e3+24e2x+e36e4+4x2x+5e24e2xlog(x)dx+120e5+24e2x5e3+24e2x+e36e4+4x2x+5e24e2xlog(x)dx+120e2+24e2xlog(x)5e3+24e2x+e36e4+4x2x+5e24e2xlog(x)dx+(5(1e3))e24e2xx(5e3+24e2x+e36e4+4x2x+5e24e2xlog(x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.68, size = 34, normalized size = 1.17 x+log(5e3+e36e424e2x+4x2x+5log(x))

Antiderivative was successfully verified.

[In]

Integrate[(5 + 5*E^3*x + E^(36*E^4 - 24*E^2*x + 4*x^2)*(x + x^2 - 24*E^2*x^2 + 8*x^3) + 5*x*Log[x])/(5*E^3*x +
 E^(36*E^4 - 24*E^2*x + 4*x^2)*x^2 + 5*x*Log[x]),x]

[Out]

x + Log[5*E^3 + E^(36*E^4 - 24*E^2*x + 4*x^2)*x + 5*Log[x]]

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 30, normalized size = 1.03 x+log(xe(4x224xe2+36e4)+5e3+5log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x*log(x)+(-24*x^2*exp(2)+8*x^3+x^2+x)*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)+5)/(5*x*log(x
)+x^2*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)),x, algorithm="fricas")

[Out]

x + log(x*e^(4*x^2 - 24*x*e^2 + 36*e^4) + 5*e^3 + 5*log(x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 5xe3+(8x324x2e2+x2+x)e(4x224xe2+36e4)+5xlog(x)+5x2e(4x224xe2+36e4)+5xe3+5xlog(x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x*log(x)+(-24*x^2*exp(2)+8*x^3+x^2+x)*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)+5)/(5*x*log(x
)+x^2*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)),x, algorithm="giac")

[Out]

integrate((5*x*e^3 + (8*x^3 - 24*x^2*e^2 + x^2 + x)*e^(4*x^2 - 24*x*e^2 + 36*e^4) + 5*x*log(x) + 5)/(x^2*e^(4*
x^2 - 24*x*e^2 + 36*e^4) + 5*x*e^3 + 5*x*log(x)), x)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 28, normalized size = 0.97




method result size



risch x+ln(e3+e36e424e2x+4x2x5+ln(x)) 28
norman x+ln(e36e424e2x+4x2x+5ln(x)+5e3) 33



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x*ln(x)+(-24*x^2*exp(2)+8*x^3+x^2+x)*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)+5)/(5*x*ln(x)+x^2*ex
p(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)),x,method=_RETURNVERBOSE)

[Out]

x+ln(exp(3)+1/5*exp(36*exp(4)-24*exp(2)*x+4*x^2)*x+ln(x))

________________________________________________________________________________________

maxima [B]  time = 0.47, size = 53, normalized size = 1.83 x(24e21)+log(xe(4x2+36e4)+5(e3+log(x))e(24xe2)5(e3+log(x)))+log(e3+log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x*log(x)+(-24*x^2*exp(2)+8*x^3+x^2+x)*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)+5)/(5*x*log(x
)+x^2*exp(36*exp(2)^2-24*exp(2)*x+4*x^2)+5*x*exp(3)),x, algorithm="maxima")

[Out]

-x*(24*e^2 - 1) + log(1/5*(x*e^(4*x^2 + 36*e^4) + 5*(e^3 + log(x))*e^(24*x*e^2))/(e^3 + log(x))) + log(e^3 + l
og(x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 5xe3+5xln(x)+e4x224e2x+36e4(x24x2e2+x2+8x3)+5x2e4x224e2x+36e4+5xe3+5xln(x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x*exp(3) + 5*x*log(x) + exp(36*exp(4) - 24*x*exp(2) + 4*x^2)*(x - 24*x^2*exp(2) + x^2 + 8*x^3) + 5)/(x^
2*exp(36*exp(4) - 24*x*exp(2) + 4*x^2) + 5*x*exp(3) + 5*x*log(x)),x)

[Out]

int((5*x*exp(3) + 5*x*log(x) + exp(36*exp(4) - 24*x*exp(2) + 4*x^2)*(x - 24*x^2*exp(2) + x^2 + 8*x^3) + 5)/(x^
2*exp(36*exp(4) - 24*x*exp(2) + 4*x^2) + 5*x*exp(3) + 5*x*log(x)), x)

________________________________________________________________________________________

sympy [A]  time = 0.55, size = 36, normalized size = 1.24 x+log(x)+log(e4x224xe2+36e4+5log(x)+5e3x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x*ln(x)+(-24*x**2*exp(2)+8*x**3+x**2+x)*exp(36*exp(2)**2-24*exp(2)*x+4*x**2)+5*x*exp(3)+5)/(5*x*l
n(x)+x**2*exp(36*exp(2)**2-24*exp(2)*x+4*x**2)+5*x*exp(3)),x)

[Out]

x + log(x) + log(exp(4*x**2 - 24*x*exp(2) + 36*exp(4)) + (5*log(x) + 5*exp(3))/x)

________________________________________________________________________________________