3.33.15 5+5x+5x2+5x3+(10x10x2)log(x)(x+3x2+3x3+x4)log2(x)dx

Optimal. Leaf size=17 55x2(1+x)2log(x)

________________________________________________________________________________________

Rubi [F]  time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 5+5x+5x2+5x3+(10x10x2)log(x)(x+3x2+3x3+x4)log2(x)dx

Verification is not applicable to the result.

[In]

Int[(5 + 5*x + 5*x^2 + 5*x^3 + (10*x - 10*x^2)*Log[x])/((x + 3*x^2 + 3*x^3 + x^4)*Log[x]^2),x]

[Out]

5*Defer[Int][(1 + x^2)/(x*(1 + x)^2*Log[x]^2), x] - 10*Defer[Int][(-1 + x)/((1 + x)^3*Log[x]), x]

Rubi steps

integral=5(1+x+x2+x32(1+x)xlog(x))x(1+x)3log2(x)dx=51+x+x2+x32(1+x)xlog(x)x(1+x)3log2(x)dx=5(1+x2x(1+x)2log2(x)2(1+x)(1+x)3log(x))dx=51+x2x(1+x)2log2(x)dx101+x(1+x)3log(x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 18, normalized size = 1.06 5(1x2)(1+x)2log(x)

Antiderivative was successfully verified.

[In]

Integrate[(5 + 5*x + 5*x^2 + 5*x^3 + (10*x - 10*x^2)*Log[x])/((x + 3*x^2 + 3*x^3 + x^4)*Log[x]^2),x]

[Out]

(5*(-1 - x^2))/((1 + x)^2*Log[x])

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 21, normalized size = 1.24 5(x2+1)(x2+2x+1)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-10*x^2+10*x)*log(x)+5*x^3+5*x^2+5*x+5)/(x^4+3*x^3+3*x^2+x)/log(x)^2,x, algorithm="fricas")

[Out]

-5*(x^2 + 1)/((x^2 + 2*x + 1)*log(x))

________________________________________________________________________________________

giac [A]  time = 0.20, size = 23, normalized size = 1.35 5(x2+1)x2log(x)+2xlog(x)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-10*x^2+10*x)*log(x)+5*x^3+5*x^2+5*x+5)/(x^4+3*x^3+3*x^2+x)/log(x)^2,x, algorithm="giac")

[Out]

-5*(x^2 + 1)/(x^2*log(x) + 2*x*log(x) + log(x))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 18, normalized size = 1.06




method result size



norman 5x25ln(x)(x+1)2 18
risch 5(x2+1)(x2+2x+1)ln(x) 22



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-10*x^2+10*x)*ln(x)+5*x^3+5*x^2+5*x+5)/(x^4+3*x^3+3*x^2+x)/ln(x)^2,x,method=_RETURNVERBOSE)

[Out]

1/ln(x)/(x+1)^2*(-5*x^2-5)

________________________________________________________________________________________

maxima [A]  time = 0.68, size = 21, normalized size = 1.24 5(x2+1)(x2+2x+1)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-10*x^2+10*x)*log(x)+5*x^3+5*x^2+5*x+5)/(x^4+3*x^3+3*x^2+x)/log(x)^2,x, algorithm="maxima")

[Out]

-5*(x^2 + 1)/((x^2 + 2*x + 1)*log(x))

________________________________________________________________________________________

mupad [B]  time = 1.99, size = 16, normalized size = 0.94 5(x2+1)ln(x)(x+1)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x + log(x)*(10*x - 10*x^2) + 5*x^2 + 5*x^3 + 5)/(log(x)^2*(x + 3*x^2 + 3*x^3 + x^4)),x)

[Out]

-(5*(x^2 + 1))/(log(x)*(x + 1)^2)

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 19, normalized size = 1.12 5x25(x2+2x+1)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-10*x**2+10*x)*ln(x)+5*x**3+5*x**2+5*x+5)/(x**4+3*x**3+3*x**2+x)/ln(x)**2,x)

[Out]

(-5*x**2 - 5)/((x**2 + 2*x + 1)*log(x))

________________________________________________________________________________________