3.33.19 7e4+e2x(6+12x)+e2+x(12+12x)6e2xx+12e2+xx+e4(22+7x)dx

Optimal. Leaf size=23 log(2+x+6(4+(x+e2+xx)2x))

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 27, normalized size of antiderivative = 1.17, number of steps used = 1, number of rules used = 1, integrand size = 57, number of rulesintegrand size = 0.018, Rules used = {6684} log(6e2xx+12ex+2x+e4(7x+22))

Antiderivative was successfully verified.

[In]

Int[(7*E^4 + E^(2*x)*(6 + 12*x) + E^(2 + x)*(12 + 12*x))/(6*E^(2*x)*x + 12*E^(2 + x)*x + E^4*(22 + 7*x)),x]

[Out]

Log[6*E^(2*x)*x + 12*E^(2 + x)*x + E^4*(22 + 7*x)]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rubi steps

integral=log(6e2xx+12e2+xx+e4(22+7x))

________________________________________________________________________________________

Mathematica [A]  time = 0.41, size = 29, normalized size = 1.26 log(22e4+7e4x+6e2xx+12e2+xx)

Antiderivative was successfully verified.

[In]

Integrate[(7*E^4 + E^(2*x)*(6 + 12*x) + E^(2 + x)*(12 + 12*x))/(6*E^(2*x)*x + 12*E^(2 + x)*x + E^4*(22 + 7*x))
,x]

[Out]

Log[22*E^4 + 7*E^4*x + 6*E^(2*x)*x + 12*E^(2 + x)*x]

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 33, normalized size = 1.43 log(x)+log((7x+22)e8+6xe(2x+4)+12xe(x+6)x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((12*x+6)*exp(x)^2+(12*x+12)*exp(2)*exp(x)+7*exp(2)^2)/(6*x*exp(x)^2+12*x*exp(2)*exp(x)+(7*x+22)*exp
(2)^2),x, algorithm="fricas")

[Out]

log(x) + log(((7*x + 22)*e^8 + 6*x*e^(2*x + 4) + 12*x*e^(x + 6))/x)

________________________________________________________________________________________

giac [A]  time = 0.26, size = 25, normalized size = 1.09 log(7xe4+6xe(2x)+12xe(x+2)+22e4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((12*x+6)*exp(x)^2+(12*x+12)*exp(2)*exp(x)+7*exp(2)^2)/(6*x*exp(x)^2+12*x*exp(2)*exp(x)+(7*x+22)*exp
(2)^2),x, algorithm="giac")

[Out]

log(7*x*e^4 + 6*x*e^(2*x) + 12*x*e^(x + 2) + 22*e^4)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 28, normalized size = 1.22




method result size



risch ln(x)+ln(e2x+2e2+x+(7x+22)e46x) 28
norman ln(7xe4+12xe2ex+6xe2x+22e4) 30



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((12*x+6)*exp(x)^2+(12*x+12)*exp(2)*exp(x)+7*exp(2)^2)/(6*x*exp(x)^2+12*x*exp(2)*exp(x)+(7*x+22)*exp(2)^2)
,x,method=_RETURNVERBOSE)

[Out]

ln(x)+ln(exp(2*x)+2*exp(2+x)+1/6*(7*x+22)*exp(4)/x)

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 33, normalized size = 1.43 log(x)+log(7xe4+6xe(2x)+12xe(x+2)+22e46x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((12*x+6)*exp(x)^2+(12*x+12)*exp(2)*exp(x)+7*exp(2)^2)/(6*x*exp(x)^2+12*x*exp(2)*exp(x)+(7*x+22)*exp
(2)^2),x, algorithm="maxima")

[Out]

log(x) + log(1/6*(7*x*e^4 + 6*x*e^(2*x) + 12*x*e^(x + 2) + 22*e^4)/x)

________________________________________________________________________________________

mupad [B]  time = 2.05, size = 27, normalized size = 1.17 ln(22e8+12xex+6+7xe8+6xe2x+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((7*exp(4) + exp(2*x)*(12*x + 6) + exp(2)*exp(x)*(12*x + 12))/(6*x*exp(2*x) + exp(4)*(7*x + 22) + 12*x*exp(
2)*exp(x)),x)

[Out]

log(22*exp(8) + 12*x*exp(x + 6) + 7*x*exp(8) + 6*x*exp(2*x + 4))

________________________________________________________________________________________

sympy [A]  time = 0.29, size = 32, normalized size = 1.39 log(x)+log(e2x+2e2ex+7xe4+22e46x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((12*x+6)*exp(x)**2+(12*x+12)*exp(2)*exp(x)+7*exp(2)**2)/(6*x*exp(x)**2+12*x*exp(2)*exp(x)+(7*x+22)*
exp(2)**2),x)

[Out]

log(x) + log(exp(2*x) + 2*exp(2)*exp(x) + (7*x*exp(4) + 22*exp(4))/(6*x))

________________________________________________________________________________________