Optimal. Leaf size=36 \[ \log \left (\frac {3}{4 \left (3+e^x+x-\frac {\frac {1}{5} \left (4-\frac {x}{\log (5)}\right )-4 \log (x)}{x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 e^x x^2 \log (5)+\left (-24-5 x^2\right ) \log (5)+20 \log (5) \log (x)}{x^2+5 e^x x^2 \log (5)+\left (-4 x+15 x^2+5 x^3\right ) \log (5)+20 x \log (5) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (5) \left (-24-5 x^2-5 e^x x^2+20 \log (x)\right )}{x^2+5 e^x x^2 \log (5)+\left (-4 x+15 x^2+5 x^3\right ) \log (5)+20 x \log (5) \log (x)} \, dx\\ &=\log (5) \int \frac {-24-5 x^2-5 e^x x^2+20 \log (x)}{x^2+5 e^x x^2 \log (5)+\left (-4 x+15 x^2+5 x^3\right ) \log (5)+20 x \log (5) \log (x)} \, dx\\ &=\log (5) \int \left (-\frac {1}{\log (5)}+\frac {24 \log (5)+4 x \log (5)-5 x^3 \log (5)-x^2 (1+10 \log (5))-20 \log (5) \log (x)-20 x \log (5) \log (x)}{x \log (5) \left (4 \log (5)-5 e^x x \log (5)-5 x^2 \log (5)-x (1+15 \log (5))-20 \log (5) \log (x)\right )}\right ) \, dx\\ &=-x+\int \frac {24 \log (5)+4 x \log (5)-5 x^3 \log (5)-x^2 (1+10 \log (5))-20 \log (5) \log (x)-20 x \log (5) \log (x)}{x \left (4 \log (5)-5 e^x x \log (5)-5 x^2 \log (5)-x (1+15 \log (5))-20 \log (5) \log (x)\right )} \, dx\\ &=-x+\int \left (\frac {x (-1-10 \log (5))}{4 \log (5)-5 e^x x \log (5)-5 x^2 \log (5)-x (1+15 \log (5))-20 \log (5) \log (x)}+\frac {4 \log (5)}{4 \log (5)-5 e^x x \log (5)-5 x^2 \log (5)-x (1+15 \log (5))-20 \log (5) \log (x)}+\frac {24 \log (5)}{x \left (4 \log (5)-5 e^x x \log (5)-5 x^2 \log (5)-x (1+15 \log (5))-20 \log (5) \log (x)\right )}+\frac {5 x^2 \log (5)}{-4 \log (5)+5 e^x x \log (5)+5 x^2 \log (5)+x (1+15 \log (5))+20 \log (5) \log (x)}+\frac {20 \log (5) \log (x)}{-4 \log (5)+5 e^x x \log (5)+5 x^2 \log (5)+x (1+15 \log (5))+20 \log (5) \log (x)}+\frac {20 \log (5) \log (x)}{x \left (-4 \log (5)+5 e^x x \log (5)+5 x^2 \log (5)+x (1+15 \log (5))+20 \log (5) \log (x)\right )}\right ) \, dx\\ &=-x+(-1-10 \log (5)) \int \frac {x}{4 \log (5)-5 e^x x \log (5)-5 x^2 \log (5)-x (1+15 \log (5))-20 \log (5) \log (x)} \, dx+(4 \log (5)) \int \frac {1}{4 \log (5)-5 e^x x \log (5)-5 x^2 \log (5)-x (1+15 \log (5))-20 \log (5) \log (x)} \, dx+(5 \log (5)) \int \frac {x^2}{-4 \log (5)+5 e^x x \log (5)+5 x^2 \log (5)+x (1+15 \log (5))+20 \log (5) \log (x)} \, dx+(20 \log (5)) \int \frac {\log (x)}{-4 \log (5)+5 e^x x \log (5)+5 x^2 \log (5)+x (1+15 \log (5))+20 \log (5) \log (x)} \, dx+(20 \log (5)) \int \frac {\log (x)}{x \left (-4 \log (5)+5 e^x x \log (5)+5 x^2 \log (5)+x (1+15 \log (5))+20 \log (5) \log (x)\right )} \, dx+(24 \log (5)) \int \frac {1}{x \left (4 \log (5)-5 e^x x \log (5)-5 x^2 \log (5)-x (1+15 \log (5))-20 \log (5) \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.67, size = 51, normalized size = 1.42 \begin {gather*} -\log (5) \left (-\frac {\log (x)}{\log (5)}+\frac {\log \left (x-4 \log (5)+15 x \log (5)+5 e^x x \log (5)+5 x^2 \log (5)+20 \log (5) \log (x)\right )}{\log (5)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 34, normalized size = 0.94 \begin {gather*} -\log \left (5 \, x e^{x} \log \relax (5) + {\left (5 \, x^{2} + 15 \, x - 4\right )} \log \relax (5) + 20 \, \log \relax (5) \log \relax (x) + x\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 37, normalized size = 1.03 \begin {gather*} -\log \left (5 \, x^{2} \log \relax (5) + 5 \, x e^{x} \log \relax (5) + 15 \, x \log \relax (5) + 20 \, \log \relax (5) \log \relax (x) + x - 4 \, \log \relax (5)\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 38, normalized size = 1.06
method | result | size |
norman | \(\ln \relax (x )-\ln \left (5 x \,{\mathrm e}^{x} \ln \relax (5)+5 x^{2} \ln \relax (5)+20 \ln \relax (5) \ln \relax (x )+15 x \ln \relax (5)-4 \ln \relax (5)+x \right )\) | \(38\) |
risch | \(\ln \relax (x )-\ln \left (\ln \relax (x )+\frac {5 x^{2} \ln \relax (5)+5 x \,{\mathrm e}^{x} \ln \relax (5)+15 x \ln \relax (5)-4 \ln \relax (5)+x}{20 \ln \relax (5)}\right )\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 45, normalized size = 1.25 \begin {gather*} -\log \left (\frac {5 \, x^{2} \log \relax (5) + 5 \, x e^{x} \log \relax (5) + x {\left (15 \, \log \relax (5) + 1\right )} + 20 \, \log \relax (5) \log \relax (x) - 4 \, \log \relax (5)}{5 \, x \log \relax (5)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \relax (5)\,\left (5\,x^2+24\right )-20\,\ln \relax (5)\,\ln \relax (x)+5\,x^2\,{\mathrm {e}}^x\,\ln \relax (5)}{\ln \relax (5)\,\left (5\,x^3+15\,x^2-4\,x\right )+x^2+20\,x\,\ln \relax (5)\,\ln \relax (x)+5\,x^2\,{\mathrm {e}}^x\,\ln \relax (5)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 42, normalized size = 1.17 \begin {gather*} - \log {\left (e^{x} + \frac {5 x^{2} \log {\relax (5 )} + x + 15 x \log {\relax (5 )} + 20 \log {\relax (5 )} \log {\relax (x )} - 4 \log {\relax (5 )}}{5 x \log {\relax (5 )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________