Optimal. Leaf size=38 \[ \frac {\left (\frac {4}{4-x}+\frac {4-x}{x}\right )^2}{e^{(-5+\log (2))^2}+(4+x)^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.86, antiderivative size = 194, normalized size of antiderivative = 5.11, number of steps used = 7, number of rules used = 4, integrand size = 177, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {2074, 638, 618, 204} \begin {gather*} \frac {1024 \left (402653184 x \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right )+5188146770730811392+131072 e^{75+3 \log ^2(2)}+9126805504 e^{50+2 \log ^2(2)}+e^{4 \left (25+\log ^2(2)\right )}+277076930199552 e^{25+\log ^2(2)}\right )}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2 \left (1024 x^2+8192 x+16384+e^{25+\log ^2(2)}\right )}+\frac {16384}{x^2 \left (16384+e^{25+\log ^2(2)}\right )}+\frac {268435456}{(4-x) \left (65536+e^{25+\log ^2(2)}\right )^2}-\frac {134217728}{x \left (16384+e^{25+\log ^2(2)}\right )^2}+\frac {16384}{(4-x)^2 \left (65536+e^{25+\log ^2(2)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 204
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {32768}{\left (65536+e^{25+\log ^2(2)}\right ) (-4+x)^3}+\frac {268435456}{\left (65536+e^{25+\log ^2(2)}\right )^2 (-4+x)^2}-\frac {32768}{\left (16384+e^{25+\log ^2(2)}\right ) x^3}+\frac {134217728}{\left (16384+e^{25+\log ^2(2)}\right )^2 x^2}+\frac {2097152 \left (-4 \left (2594073385365405696+13194139533312 e^{25+\log ^2(2)}+e^{4 \left (25+\log ^2(2)\right )}+1073741824 e^{50+2 \log ^2(2)}+32768 e^{75+3 \log ^2(2)}\right )-\left (2594073385365405696+171523813933056 e^{25+\log ^2(2)}+e^{4 \left (25+\log ^2(2)\right )}+7516192768 e^{50+2 \log ^2(2)}+131072 e^{75+3 \log ^2(2)}\right ) x\right )}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2 \left (16384+e^{25+\log ^2(2)}+8192 x+1024 x^2\right )^2}-\frac {412316860416 \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right )}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2 \left (16384+e^{25+\log ^2(2)}+8192 x+1024 x^2\right )}\right ) \, dx\\ &=\frac {16384}{\left (65536+e^{25+\log ^2(2)}\right ) (4-x)^2}+\frac {268435456}{\left (65536+e^{25+\log ^2(2)}\right )^2 (4-x)}+\frac {16384}{\left (16384+e^{25+\log ^2(2)}\right ) x^2}-\frac {134217728}{\left (16384+e^{25+\log ^2(2)}\right )^2 x}+\frac {2097152 \int \frac {-4 \left (2594073385365405696+13194139533312 e^{25+\log ^2(2)}+e^{4 \left (25+\log ^2(2)\right )}+1073741824 e^{50+2 \log ^2(2)}+32768 e^{75+3 \log ^2(2)}\right )-\left (2594073385365405696+171523813933056 e^{25+\log ^2(2)}+e^{4 \left (25+\log ^2(2)\right )}+7516192768 e^{50+2 \log ^2(2)}+131072 e^{75+3 \log ^2(2)}\right ) x}{\left (16384+e^{25+\log ^2(2)}+8192 x+1024 x^2\right )^2} \, dx}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2}-\frac {\left (412316860416 \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right )\right ) \int \frac {1}{16384+e^{25+\log ^2(2)}+8192 x+1024 x^2} \, dx}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2}\\ &=\frac {16384}{\left (65536+e^{25+\log ^2(2)}\right ) (4-x)^2}+\frac {268435456}{\left (65536+e^{25+\log ^2(2)}\right )^2 (4-x)}+\frac {16384}{\left (16384+e^{25+\log ^2(2)}\right ) x^2}-\frac {134217728}{\left (16384+e^{25+\log ^2(2)}\right )^2 x}+\frac {1024 \left (5188146770730811392+277076930199552 e^{25+\log ^2(2)}+e^{4 \left (25+\log ^2(2)\right )}+9126805504 e^{50+2 \log ^2(2)}+131072 e^{75+3 \log ^2(2)}+402653184 \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right ) x\right )}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2 \left (16384+e^{25+\log ^2(2)}+8192 x+1024 x^2\right )}+\frac {\left (412316860416 \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right )\right ) \int \frac {1}{16384+e^{25+\log ^2(2)}+8192 x+1024 x^2} \, dx}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2}+\frac {\left (824633720832 \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-4096 e^{25+\log ^2(2)}-x^2} \, dx,x,8192+2048 x\right )}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2}\\ &=\frac {16384}{\left (65536+e^{25+\log ^2(2)}\right ) (4-x)^2}+\frac {268435456}{\left (65536+e^{25+\log ^2(2)}\right )^2 (4-x)}+\frac {16384}{\left (16384+e^{25+\log ^2(2)}\right ) x^2}-\frac {134217728}{\left (16384+e^{25+\log ^2(2)}\right )^2 x}+\frac {1024 \left (5188146770730811392+277076930199552 e^{25+\log ^2(2)}+e^{4 \left (25+\log ^2(2)\right )}+9126805504 e^{50+2 \log ^2(2)}+131072 e^{75+3 \log ^2(2)}+402653184 \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right ) x\right )}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2 \left (16384+e^{25+\log ^2(2)}+8192 x+1024 x^2\right )}-\frac {12884901888 e^{-\frac {25}{2}-\frac {\log ^2(2)}{2}} \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right ) \tan ^{-1}\left (32 e^{-\frac {25}{2}-\frac {\log ^2(2)}{2}} (4+x)\right )}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2}-\frac {\left (824633720832 \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-4096 e^{25+\log ^2(2)}-x^2} \, dx,x,8192+2048 x\right )}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2}\\ &=\frac {16384}{\left (65536+e^{25+\log ^2(2)}\right ) (4-x)^2}+\frac {268435456}{\left (65536+e^{25+\log ^2(2)}\right )^2 (4-x)}+\frac {16384}{\left (16384+e^{25+\log ^2(2)}\right ) x^2}-\frac {134217728}{\left (16384+e^{25+\log ^2(2)}\right )^2 x}+\frac {1024 \left (5188146770730811392+277076930199552 e^{25+\log ^2(2)}+e^{4 \left (25+\log ^2(2)\right )}+9126805504 e^{50+2 \log ^2(2)}+131072 e^{75+3 \log ^2(2)}+402653184 \left (1610612736+65536 e^{25+\log ^2(2)}+e^{50+2 \log ^2(2)}\right ) x\right )}{\left (16384+e^{25+\log ^2(2)}\right )^2 \left (65536+e^{25+\log ^2(2)}\right )^2 \left (16384+e^{25+\log ^2(2)}+8192 x+1024 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 38, normalized size = 1.00 \begin {gather*} \frac {1024 \left (16-4 x+x^2\right )^2}{(-4+x)^2 x^2 \left (e^{25+\log ^2(2)}+1024 (4+x)^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 61, normalized size = 1.61 \begin {gather*} \frac {x^{4} - 8 \, x^{3} + 48 \, x^{2} - 128 \, x + 256}{x^{6} - 32 \, x^{4} + 256 \, x^{2} + {\left (x^{4} - 8 \, x^{3} + 16 \, x^{2}\right )} e^{\left (\log \relax (2)^{2} - 10 \, \log \relax (2) + 25\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 1.30, size = 49, normalized size = 1.29
method | result | size |
norman | \(\frac {1024 x^{4}-8192 x^{3}+49152 x^{2}-131072 x +262144}{x^{2} \left (x -4\right )^{2} \left (1024 x^{2}+{\mathrm e}^{25+\ln \relax (2)^{2}}+8192 x +16384\right )}\) | \(49\) |
gosper | \(\frac {\left (x^{2}-4 x +16\right )^{2}}{x^{2} \left (x^{4}+{\mathrm e}^{\ln \relax (2)^{2}-10 \ln \relax (2)+25} x^{2}-8 \,{\mathrm e}^{\ln \relax (2)^{2}-10 \ln \relax (2)+25} x -32 x^{2}+16 \,{\mathrm e}^{\ln \relax (2)^{2}-10 \ln \relax (2)+25}+256\right )}\) | \(69\) |
risch | \(\frac {1024 x^{4}-8192 x^{3}+49152 x^{2}-131072 x +262144}{x^{2} \left ({\mathrm e}^{25+\ln \relax (2)^{2}} x^{2}+1024 x^{4}-8 \,{\mathrm e}^{25+\ln \relax (2)^{2}} x +16 \,{\mathrm e}^{25+\ln \relax (2)^{2}}-32768 x^{2}+262144\right )}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.01, size = 67, normalized size = 1.76 \begin {gather*} \frac {1024 \, {\left (x^{4} - 8 \, x^{3} + 48 \, x^{2} - 128 \, x + 256\right )}}{1024 \, x^{6} + x^{4} {\left (e^{\left (\log \relax (2)^{2} + 25\right )} - 32768\right )} - 8 \, x^{3} e^{\left (\log \relax (2)^{2} + 25\right )} + 16 \, x^{2} {\left (e^{\left (\log \relax (2)^{2} + 25\right )} + 16384\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.41, size = 69, normalized size = 1.82 \begin {gather*} \frac {1024\,x^4-8192\,x^3+49152\,x^2-131072\,x+262144}{1024\,x^6+\left ({\mathrm {e}}^{{\ln \relax (2)}^2+25}-32768\right )\,x^4-8\,{\mathrm {e}}^{{\ln \relax (2)}^2+25}\,x^3+\left (16\,{\mathrm {e}}^{{\ln \relax (2)}^2+25}+262144\right )\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 11.46, size = 73, normalized size = 1.92 \begin {gather*} - \frac {- 1024 x^{4} + 8192 x^{3} - 49152 x^{2} + 131072 x - 262144}{1024 x^{6} + x^{4} \left (-32768 + e^{25} e^{\log {\relax (2 )}^{2}}\right ) - 8 x^{3} e^{25} e^{\log {\relax (2 )}^{2}} + x^{2} \left (262144 + 16 e^{25} e^{\log {\relax (2 )}^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________