3.33.28
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [F] time = 2.15, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-2*x - E^5*x - x^2 + E^x*(-6*E^5*x^3 - 6*x^4) + E^(2*x)*(-6*E^5*x^3 - 6*x^4) + (E^5 + x + E^x*(-18*E^5*x^
2 - 18*x^3) + E^(2*x)*(-18*E^5*x^2 - 18*x^3))*Log[E^5 + x] + (E^x*(-18*E^5*x - 18*x^2) + E^(2*x)*(-18*E^5*x -
18*x^2))*Log[E^5 + x]^2 + (E^x*(-6*E^5 - 6*x) + E^(2*x)*(-6*E^5 - 6*x))*Log[E^5 + x]^3)/(E^5*x^3 + x^4 + (3*E^
5*x^2 + 3*x^3)*Log[E^5 + x] + (3*E^5*x + 3*x^2)*Log[E^5 + x]^2 + (E^5 + x)*Log[E^5 + x]^3),x]
[Out]
-6*E^x - 3*E^(2*x) + E^5*Defer[Int][(x + Log[E^5 + x])^(-3), x] - (2 + E^5)*Defer[Int][(x + Log[E^5 + x])^(-3)
, x] - 2*Defer[Int][x/(x + Log[E^5 + x])^3, x] - E^10*Defer[Int][1/((E^5 + x)*(x + Log[E^5 + x])^3), x] + E^5*
(2 + E^5)*Defer[Int][1/((E^5 + x)*(x + Log[E^5 + x])^3), x] + Defer[Int][(x + Log[E^5 + x])^(-2), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 25, normalized size = 1.14
Antiderivative was successfully verified.
[In]
Integrate[(-2*x - E^5*x - x^2 + E^x*(-6*E^5*x^3 - 6*x^4) + E^(2*x)*(-6*E^5*x^3 - 6*x^4) + (E^5 + x + E^x*(-18*
E^5*x^2 - 18*x^3) + E^(2*x)*(-18*E^5*x^2 - 18*x^3))*Log[E^5 + x] + (E^x*(-18*E^5*x - 18*x^2) + E^(2*x)*(-18*E^
5*x - 18*x^2))*Log[E^5 + x]^2 + (E^x*(-6*E^5 - 6*x) + E^(2*x)*(-6*E^5 - 6*x))*Log[E^5 + x]^3)/(E^5*x^3 + x^4 +
(3*E^5*x^2 + 3*x^3)*Log[E^5 + x] + (3*E^5*x + 3*x^2)*Log[E^5 + x]^2 + (E^5 + x)*Log[E^5 + x]^3),x]
[Out]
-6*E^x - 3*E^(2*x) + x/(x + Log[E^5 + x])^2
________________________________________________________________________________________
fricas [B] time = 0.71, size = 80, normalized size = 3.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-6*exp(5)-6*x)*exp(x)^2+(-6*exp(5)-6*x)*exp(x))*log(exp(5)+x)^3+((-18*x*exp(5)-18*x^2)*exp(x)^2+(
-18*x*exp(5)-18*x^2)*exp(x))*log(exp(5)+x)^2+((-18*x^2*exp(5)-18*x^3)*exp(x)^2+(-18*x^2*exp(5)-18*x^3)*exp(x)+
exp(5)+x)*log(exp(5)+x)+(-6*x^3*exp(5)-6*x^4)*exp(x)^2+(-6*x^3*exp(5)-6*x^4)*exp(x)-x*exp(5)-x^2-2*x)/((exp(5)
+x)*log(exp(5)+x)^3+(3*x*exp(5)+3*x^2)*log(exp(5)+x)^2+(3*x^2*exp(5)+3*x^3)*log(exp(5)+x)+x^3*exp(5)+x^4),x, a
lgorithm="fricas")
[Out]
-(3*x^2*e^(2*x) + 6*x^2*e^x + 3*(e^(2*x) + 2*e^x)*log(x + e^5)^2 + 6*(x*e^(2*x) + 2*x*e^x)*log(x + e^5) - x)/(
x^2 + 2*x*log(x + e^5) + log(x + e^5)^2)
________________________________________________________________________________________
giac [B] time = 1.11, size = 89, normalized size = 4.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-6*exp(5)-6*x)*exp(x)^2+(-6*exp(5)-6*x)*exp(x))*log(exp(5)+x)^3+((-18*x*exp(5)-18*x^2)*exp(x)^2+(
-18*x*exp(5)-18*x^2)*exp(x))*log(exp(5)+x)^2+((-18*x^2*exp(5)-18*x^3)*exp(x)^2+(-18*x^2*exp(5)-18*x^3)*exp(x)+
exp(5)+x)*log(exp(5)+x)+(-6*x^3*exp(5)-6*x^4)*exp(x)^2+(-6*x^3*exp(5)-6*x^4)*exp(x)-x*exp(5)-x^2-2*x)/((exp(5)
+x)*log(exp(5)+x)^3+(3*x*exp(5)+3*x^2)*log(exp(5)+x)^2+(3*x^2*exp(5)+3*x^3)*log(exp(5)+x)+x^3*exp(5)+x^4),x, a
lgorithm="giac")
[Out]
-(3*x^2*e^(2*x) + 6*x^2*e^x + 6*x*e^(2*x)*log(x + e^5) + 12*x*e^x*log(x + e^5) + 3*e^(2*x)*log(x + e^5)^2 + 6*
e^x*log(x + e^5)^2 - x)/(x^2 + 2*x*log(x + e^5) + log(x + e^5)^2)
________________________________________________________________________________________
maple [A] time = 0.36, size = 23, normalized size = 1.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-6*exp(5)-6*x)*exp(x)^2+(-6*exp(5)-6*x)*exp(x))*ln(exp(5)+x)^3+((-18*x*exp(5)-18*x^2)*exp(x)^2+(-18*x*e
xp(5)-18*x^2)*exp(x))*ln(exp(5)+x)^2+((-18*x^2*exp(5)-18*x^3)*exp(x)^2+(-18*x^2*exp(5)-18*x^3)*exp(x)+exp(5)+x
)*ln(exp(5)+x)+(-6*x^3*exp(5)-6*x^4)*exp(x)^2+(-6*x^3*exp(5)-6*x^4)*exp(x)-x*exp(5)-x^2-2*x)/((exp(5)+x)*ln(ex
p(5)+x)^3+(3*x*exp(5)+3*x^2)*ln(exp(5)+x)^2+(3*x^2*exp(5)+3*x^3)*ln(exp(5)+x)+x^3*exp(5)+x^4),x,method=_RETURN
VERBOSE)
[Out]
-3*exp(2*x)-6*exp(x)+x/(ln(exp(5)+x)+x)^2
________________________________________________________________________________________
maxima [B] time = 0.81, size = 80, normalized size = 3.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-6*exp(5)-6*x)*exp(x)^2+(-6*exp(5)-6*x)*exp(x))*log(exp(5)+x)^3+((-18*x*exp(5)-18*x^2)*exp(x)^2+(
-18*x*exp(5)-18*x^2)*exp(x))*log(exp(5)+x)^2+((-18*x^2*exp(5)-18*x^3)*exp(x)^2+(-18*x^2*exp(5)-18*x^3)*exp(x)+
exp(5)+x)*log(exp(5)+x)+(-6*x^3*exp(5)-6*x^4)*exp(x)^2+(-6*x^3*exp(5)-6*x^4)*exp(x)-x*exp(5)-x^2-2*x)/((exp(5)
+x)*log(exp(5)+x)^3+(3*x*exp(5)+3*x^2)*log(exp(5)+x)^2+(3*x^2*exp(5)+3*x^3)*log(exp(5)+x)+x^3*exp(5)+x^4),x, a
lgorithm="maxima")
[Out]
-(3*x^2*e^(2*x) + 6*x^2*e^x + 3*(e^(2*x) + 2*e^x)*log(x + e^5)^2 + 6*(x*e^(2*x) + 2*x*e^x)*log(x + e^5) - x)/(
x^2 + 2*x*log(x + e^5) + log(x + e^5)^2)
________________________________________________________________________________________
mupad [B] time = 2.70, size = 181, normalized size = 8.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(2*x + x*exp(5) + log(x + exp(5))^2*(exp(x)*(18*x*exp(5) + 18*x^2) + exp(2*x)*(18*x*exp(5) + 18*x^2)) + e
xp(x)*(6*x^3*exp(5) + 6*x^4) - log(x + exp(5))*(x + exp(5) - exp(x)*(18*x^2*exp(5) + 18*x^3) - exp(2*x)*(18*x^
2*exp(5) + 18*x^3)) + log(x + exp(5))^3*(exp(x)*(6*x + 6*exp(5)) + exp(2*x)*(6*x + 6*exp(5))) + exp(2*x)*(6*x^
3*exp(5) + 6*x^4) + x^2)/(log(x + exp(5))^2*(3*x*exp(5) + 3*x^2) + log(x + exp(5))*(3*x^2*exp(5) + 3*x^3) + x^
3*exp(5) + log(x + exp(5))^3*(x + exp(5)) + x^4),x)
[Out]
((x*(x + exp(5) + 2))/(2*(x + exp(5) + 1)) - (log(x + exp(5))*(x + exp(5)))/(2*(x + exp(5) + 1)))/(log(x + exp
(5))^2 + 2*x*log(x + exp(5)) + x^2) - 6*exp(x) - 3*exp(2*x) + (((x + exp(5))*(x + 2*exp(5) + exp(10) + 2*x*exp
(5) + x^2 + 1))/(2*(x + exp(5) + 1)^3) - (log(x + exp(5))*(x + exp(5)))/(2*(x + exp(5) + 1)^3))/(x + log(x + e
xp(5))) + (x + exp(5))/(6*exp(5) + 6*exp(10) + 2*exp(15) + x^2*(6*exp(5) + 6) + x*(12*exp(5) + 6*exp(10) + 6)
+ 2*x^3 + 2)
________________________________________________________________________________________
sympy [A] time = 0.59, size = 34, normalized size = 1.55
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-6*exp(5)-6*x)*exp(x)**2+(-6*exp(5)-6*x)*exp(x))*ln(exp(5)+x)**3+((-18*x*exp(5)-18*x**2)*exp(x)**
2+(-18*x*exp(5)-18*x**2)*exp(x))*ln(exp(5)+x)**2+((-18*x**2*exp(5)-18*x**3)*exp(x)**2+(-18*x**2*exp(5)-18*x**3
)*exp(x)+exp(5)+x)*ln(exp(5)+x)+(-6*x**3*exp(5)-6*x**4)*exp(x)**2+(-6*x**3*exp(5)-6*x**4)*exp(x)-x*exp(5)-x**2
-2*x)/((exp(5)+x)*ln(exp(5)+x)**3+(3*x*exp(5)+3*x**2)*ln(exp(5)+x)**2+(3*x**2*exp(5)+3*x**3)*ln(exp(5)+x)+x**3
*exp(5)+x**4),x)
[Out]
x/(x**2 + 2*x*log(x + exp(5)) + log(x + exp(5))**2) - 3*exp(2*x) - 6*exp(x)
________________________________________________________________________________________