Optimal. Leaf size=22 \[ -3 \left (1+e^x\right )^2+\frac {x}{\left (x+\log \left (e^5+x\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x-e^5 x-x^2+e^x \left (-6 e^5 x^3-6 x^4\right )+e^{2 x} \left (-6 e^5 x^3-6 x^4\right )+\left (e^5+x+e^x \left (-18 e^5 x^2-18 x^3\right )+e^{2 x} \left (-18 e^5 x^2-18 x^3\right )\right ) \log \left (e^5+x\right )+\left (e^x \left (-18 e^5 x-18 x^2\right )+e^{2 x} \left (-18 e^5 x-18 x^2\right )\right ) \log ^2\left (e^5+x\right )+\left (e^x \left (-6 e^5-6 x\right )+e^{2 x} \left (-6 e^5-6 x\right )\right ) \log ^3\left (e^5+x\right )}{e^5 x^3+x^4+\left (3 e^5 x^2+3 x^3\right ) \log \left (e^5+x\right )+\left (3 e^5 x+3 x^2\right ) \log ^2\left (e^5+x\right )+\left (e^5+x\right ) \log ^3\left (e^5+x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-2-e^5\right ) x-x^2+e^x \left (-6 e^5 x^3-6 x^4\right )+e^{2 x} \left (-6 e^5 x^3-6 x^4\right )+\left (e^5+x+e^x \left (-18 e^5 x^2-18 x^3\right )+e^{2 x} \left (-18 e^5 x^2-18 x^3\right )\right ) \log \left (e^5+x\right )+\left (e^x \left (-18 e^5 x-18 x^2\right )+e^{2 x} \left (-18 e^5 x-18 x^2\right )\right ) \log ^2\left (e^5+x\right )+\left (e^x \left (-6 e^5-6 x\right )+e^{2 x} \left (-6 e^5-6 x\right )\right ) \log ^3\left (e^5+x\right )}{e^5 x^3+x^4+\left (3 e^5 x^2+3 x^3\right ) \log \left (e^5+x\right )+\left (3 e^5 x+3 x^2\right ) \log ^2\left (e^5+x\right )+\left (e^5+x\right ) \log ^3\left (e^5+x\right )} \, dx\\ &=\int \frac {-x \left (2+e^5+x+6 e^{5+x} x^2+6 e^{5+2 x} x^2+6 e^x x^3+6 e^{2 x} x^3\right )-\left (e^5+x\right ) \left (-1+18 e^x x^2+18 e^{2 x} x^2\right ) \log \left (e^5+x\right )-18 e^x \left (1+e^x\right ) x \left (e^5+x\right ) \log ^2\left (e^5+x\right )-6 e^x \left (1+e^x\right ) \left (e^5+x\right ) \log ^3\left (e^5+x\right )}{\left (e^5+x\right ) \left (x+\log \left (e^5+x\right )\right )^3} \, dx\\ &=\int \left (-6 e^x-6 e^{2 x}-\frac {2 \left (1+\frac {e^5}{2}\right ) x}{\left (e^5+x\right ) \left (x+\log \left (e^5+x\right )\right )^3}-\frac {x^2}{\left (e^5+x\right ) \left (x+\log \left (e^5+x\right )\right )^3}+\frac {\log \left (e^5+x\right )}{\left (x+\log \left (e^5+x\right )\right )^3}\right ) \, dx\\ &=-\left (6 \int e^x \, dx\right )-6 \int e^{2 x} \, dx-\left (2+e^5\right ) \int \frac {x}{\left (e^5+x\right ) \left (x+\log \left (e^5+x\right )\right )^3} \, dx-\int \frac {x^2}{\left (e^5+x\right ) \left (x+\log \left (e^5+x\right )\right )^3} \, dx+\int \frac {\log \left (e^5+x\right )}{\left (x+\log \left (e^5+x\right )\right )^3} \, dx\\ &=-6 e^x-3 e^{2 x}-\left (2+e^5\right ) \int \left (\frac {1}{\left (x+\log \left (e^5+x\right )\right )^3}-\frac {e^5}{\left (e^5+x\right ) \left (x+\log \left (e^5+x\right )\right )^3}\right ) \, dx-\int \left (-\frac {e^5}{\left (x+\log \left (e^5+x\right )\right )^3}+\frac {x}{\left (x+\log \left (e^5+x\right )\right )^3}+\frac {e^{10}}{\left (e^5+x\right ) \left (x+\log \left (e^5+x\right )\right )^3}\right ) \, dx+\int \left (-\frac {x}{\left (x+\log \left (e^5+x\right )\right )^3}+\frac {1}{\left (x+\log \left (e^5+x\right )\right )^2}\right ) \, dx\\ &=-6 e^x-3 e^{2 x}+e^5 \int \frac {1}{\left (x+\log \left (e^5+x\right )\right )^3} \, dx-e^{10} \int \frac {1}{\left (e^5+x\right ) \left (x+\log \left (e^5+x\right )\right )^3} \, dx-\left (2+e^5\right ) \int \frac {1}{\left (x+\log \left (e^5+x\right )\right )^3} \, dx+\left (e^5 \left (2+e^5\right )\right ) \int \frac {1}{\left (e^5+x\right ) \left (x+\log \left (e^5+x\right )\right )^3} \, dx-2 \int \frac {x}{\left (x+\log \left (e^5+x\right )\right )^3} \, dx+\int \frac {1}{\left (x+\log \left (e^5+x\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 25, normalized size = 1.14 \begin {gather*} -6 e^x-3 e^{2 x}+\frac {x}{\left (x+\log \left (e^5+x\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 80, normalized size = 3.64 \begin {gather*} -\frac {3 \, x^{2} e^{\left (2 \, x\right )} + 6 \, x^{2} e^{x} + 3 \, {\left (e^{\left (2 \, x\right )} + 2 \, e^{x}\right )} \log \left (x + e^{5}\right )^{2} + 6 \, {\left (x e^{\left (2 \, x\right )} + 2 \, x e^{x}\right )} \log \left (x + e^{5}\right ) - x}{x^{2} + 2 \, x \log \left (x + e^{5}\right ) + \log \left (x + e^{5}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.11, size = 89, normalized size = 4.05 \begin {gather*} -\frac {3 \, x^{2} e^{\left (2 \, x\right )} + 6 \, x^{2} e^{x} + 6 \, x e^{\left (2 \, x\right )} \log \left (x + e^{5}\right ) + 12 \, x e^{x} \log \left (x + e^{5}\right ) + 3 \, e^{\left (2 \, x\right )} \log \left (x + e^{5}\right )^{2} + 6 \, e^{x} \log \left (x + e^{5}\right )^{2} - x}{x^{2} + 2 \, x \log \left (x + e^{5}\right ) + \log \left (x + e^{5}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 23, normalized size = 1.05
method | result | size |
risch | \(-3 \,{\mathrm e}^{2 x}-6 \,{\mathrm e}^{x}+\frac {x}{\left (\ln \left ({\mathrm e}^{5}+x \right )+x \right )^{2}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.81, size = 80, normalized size = 3.64 \begin {gather*} -\frac {3 \, x^{2} e^{\left (2 \, x\right )} + 6 \, x^{2} e^{x} + 3 \, {\left (e^{\left (2 \, x\right )} + 2 \, e^{x}\right )} \log \left (x + e^{5}\right )^{2} + 6 \, {\left (x e^{\left (2 \, x\right )} + 2 \, x e^{x}\right )} \log \left (x + e^{5}\right ) - x}{x^{2} + 2 \, x \log \left (x + e^{5}\right ) + \log \left (x + e^{5}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.70, size = 181, normalized size = 8.23 \begin {gather*} \frac {\frac {x\,\left (x+{\mathrm {e}}^5+2\right )}{2\,\left (x+{\mathrm {e}}^5+1\right )}-\frac {\ln \left (x+{\mathrm {e}}^5\right )\,\left (x+{\mathrm {e}}^5\right )}{2\,\left (x+{\mathrm {e}}^5+1\right )}}{x^2+2\,x\,\ln \left (x+{\mathrm {e}}^5\right )+{\ln \left (x+{\mathrm {e}}^5\right )}^2}-6\,{\mathrm {e}}^x-3\,{\mathrm {e}}^{2\,x}+\frac {\frac {\left (x+{\mathrm {e}}^5\right )\,\left (x+2\,{\mathrm {e}}^5+{\mathrm {e}}^{10}+2\,x\,{\mathrm {e}}^5+x^2+1\right )}{2\,{\left (x+{\mathrm {e}}^5+1\right )}^3}-\frac {\ln \left (x+{\mathrm {e}}^5\right )\,\left (x+{\mathrm {e}}^5\right )}{2\,{\left (x+{\mathrm {e}}^5+1\right )}^3}}{x+\ln \left (x+{\mathrm {e}}^5\right )}+\frac {x+{\mathrm {e}}^5}{2\,x^3+\left (6\,{\mathrm {e}}^5+6\right )\,x^2+\left (12\,{\mathrm {e}}^5+6\,{\mathrm {e}}^{10}+6\right )\,x+6\,{\mathrm {e}}^5+6\,{\mathrm {e}}^{10}+2\,{\mathrm {e}}^{15}+2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.59, size = 34, normalized size = 1.55 \begin {gather*} \frac {x}{x^{2} + 2 x \log {\left (x + e^{5} \right )} + \log {\left (x + e^{5} \right )}^{2}} - 3 e^{2 x} - 6 e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________