3.33.30 35905760x+3264x2768x3+64x4+(3600+3264x21536x3+192x4)log(x)x2dx

Optimal. Leaf size=25 2+10+16(3+2(3x)2)2log(x)x

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 36, normalized size of antiderivative = 1.44, number of steps used = 10, number of rules used = 4, integrand size = 44, number of rulesintegrand size = 0.091, Rules used = {14, 2357, 2295, 2304} 64x3log(x)768x2log(x)+10x+3264xlog(x)5760log(x)+3600log(x)x

Antiderivative was successfully verified.

[In]

Int[(3590 - 5760*x + 3264*x^2 - 768*x^3 + 64*x^4 + (-3600 + 3264*x^2 - 1536*x^3 + 192*x^4)*Log[x])/x^2,x]

[Out]

10/x - 5760*Log[x] + (3600*Log[x])/x + 3264*x*Log[x] - 768*x^2*Log[x] + 64*x^3*Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2357

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]

Rubi steps

integral=(2(17952880x+1632x2384x3+32x4)x2+48(1512x+2x2)(54x+2x2)log(x)x2)dx=217952880x+1632x2384x3+32x4x2dx+48(1512x+2x2)(54x+2x2)log(x)x2dx=2(1632+1795x22880x384x+32x2)dx+48(68log(x)75log(x)x232xlog(x)+4x2log(x))dx=3590x+3264x384x2+64x335760log(x)+192x2log(x)dx1536xlog(x)dx+3264log(x)dx3600log(x)x2dx=10x5760log(x)+3600log(x)x+3264xlog(x)768x2log(x)+64x3log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 36, normalized size = 1.44 10x5760log(x)+3600log(x)x+3264xlog(x)768x2log(x)+64x3log(x)

Antiderivative was successfully verified.

[In]

Integrate[(3590 - 5760*x + 3264*x^2 - 768*x^3 + 64*x^4 + (-3600 + 3264*x^2 - 1536*x^3 + 192*x^4)*Log[x])/x^2,x
]

[Out]

10/x - 5760*Log[x] + (3600*Log[x])/x + 3264*x*Log[x] - 768*x^2*Log[x] + 64*x^3*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 31, normalized size = 1.24 2(8(4x448x3+204x2360x+225)log(x)+5)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((192*x^4-1536*x^3+3264*x^2-3600)*log(x)+64*x^4-768*x^3+3264*x^2-5760*x+3590)/x^2,x, algorithm="fric
as")

[Out]

2*(8*(4*x^4 - 48*x^3 + 204*x^2 - 360*x + 225)*log(x) + 5)/x

________________________________________________________________________________________

giac [A]  time = 0.23, size = 33, normalized size = 1.32 16(4x348x2+204x+225x)log(x)+10x5760log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((192*x^4-1536*x^3+3264*x^2-3600)*log(x)+64*x^4-768*x^3+3264*x^2-5760*x+3590)/x^2,x, algorithm="giac
")

[Out]

16*(4*x^3 - 48*x^2 + 204*x + 225/x)*log(x) + 10/x - 5760*log(x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 37, normalized size = 1.48




method result size



default 64x3ln(x)768x2ln(x)+3264xln(x)+3600ln(x)x+10x5760ln(x) 37
norman 105760xln(x)+3264x2ln(x)768x3ln(x)+64x4ln(x)+3600ln(x)x 37
risch 16(4x448x3+204x2+225)ln(x)x10(576xln(x)1)x 38



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((192*x^4-1536*x^3+3264*x^2-3600)*ln(x)+64*x^4-768*x^3+3264*x^2-5760*x+3590)/x^2,x,method=_RETURNVERBOSE)

[Out]

64*x^3*ln(x)-768*x^2*ln(x)+3264*x*ln(x)+3600*ln(x)/x+10/x-5760*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 36, normalized size = 1.44 64x3log(x)768x2log(x)+3264xlog(x)+3600log(x)x+10x5760log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((192*x^4-1536*x^3+3264*x^2-3600)*log(x)+64*x^4-768*x^3+3264*x^2-5760*x+3590)/x^2,x, algorithm="maxi
ma")

[Out]

64*x^3*log(x) - 768*x^2*log(x) + 3264*x*log(x) + 3600*log(x)/x + 10/x - 5760*log(x)

________________________________________________________________________________________

mupad [B]  time = 1.95, size = 34, normalized size = 1.36 64x3ln(x)768x2ln(x)5760ln(x)+3264xln(x)+3600ln(x)+10x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x)*(3264*x^2 - 1536*x^3 + 192*x^4 - 3600) - 5760*x + 3264*x^2 - 768*x^3 + 64*x^4 + 3590)/x^2,x)

[Out]

64*x^3*log(x) - 768*x^2*log(x) - 5760*log(x) + 3264*x*log(x) + (3600*log(x) + 10)/x

________________________________________________________________________________________

sympy [A]  time = 0.18, size = 29, normalized size = 1.16 5760log(x)+(64x4768x3+3264x2+3600)log(x)x+10x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((192*x**4-1536*x**3+3264*x**2-3600)*ln(x)+64*x**4-768*x**3+3264*x**2-5760*x+3590)/x**2,x)

[Out]

-5760*log(x) + (64*x**4 - 768*x**3 + 3264*x**2 + 3600)*log(x)/x + 10/x

________________________________________________________________________________________