3.33.30
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 36, normalized size of antiderivative = 1.44,
number of steps used = 10, number of rules used = 4, integrand size = 44, = 0.091, Rules used
= {14, 2357, 2295, 2304}
Antiderivative was successfully verified.
[In]
Int[(3590 - 5760*x + 3264*x^2 - 768*x^3 + 64*x^4 + (-3600 + 3264*x^2 - 1536*x^3 + 192*x^4)*Log[x])/x^2,x]
[Out]
10/x - 5760*Log[x] + (3600*Log[x])/x + 3264*x*Log[x] - 768*x^2*Log[x] + 64*x^3*Log[x]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2304
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
Rule 2357
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 36, normalized size = 1.44
Antiderivative was successfully verified.
[In]
Integrate[(3590 - 5760*x + 3264*x^2 - 768*x^3 + 64*x^4 + (-3600 + 3264*x^2 - 1536*x^3 + 192*x^4)*Log[x])/x^2,x
]
[Out]
10/x - 5760*Log[x] + (3600*Log[x])/x + 3264*x*Log[x] - 768*x^2*Log[x] + 64*x^3*Log[x]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 31, normalized size = 1.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((192*x^4-1536*x^3+3264*x^2-3600)*log(x)+64*x^4-768*x^3+3264*x^2-5760*x+3590)/x^2,x, algorithm="fric
as")
[Out]
2*(8*(4*x^4 - 48*x^3 + 204*x^2 - 360*x + 225)*log(x) + 5)/x
________________________________________________________________________________________
giac [A] time = 0.23, size = 33, normalized size = 1.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((192*x^4-1536*x^3+3264*x^2-3600)*log(x)+64*x^4-768*x^3+3264*x^2-5760*x+3590)/x^2,x, algorithm="giac
")
[Out]
16*(4*x^3 - 48*x^2 + 204*x + 225/x)*log(x) + 10/x - 5760*log(x)
________________________________________________________________________________________
maple [A] time = 0.02, size = 37, normalized size = 1.48
|
|
|
method |
result |
size |
|
|
|
default |
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((192*x^4-1536*x^3+3264*x^2-3600)*ln(x)+64*x^4-768*x^3+3264*x^2-5760*x+3590)/x^2,x,method=_RETURNVERBOSE)
[Out]
64*x^3*ln(x)-768*x^2*ln(x)+3264*x*ln(x)+3600*ln(x)/x+10/x-5760*ln(x)
________________________________________________________________________________________
maxima [A] time = 0.41, size = 36, normalized size = 1.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((192*x^4-1536*x^3+3264*x^2-3600)*log(x)+64*x^4-768*x^3+3264*x^2-5760*x+3590)/x^2,x, algorithm="maxi
ma")
[Out]
64*x^3*log(x) - 768*x^2*log(x) + 3264*x*log(x) + 3600*log(x)/x + 10/x - 5760*log(x)
________________________________________________________________________________________
mupad [B] time = 1.95, size = 34, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(x)*(3264*x^2 - 1536*x^3 + 192*x^4 - 3600) - 5760*x + 3264*x^2 - 768*x^3 + 64*x^4 + 3590)/x^2,x)
[Out]
64*x^3*log(x) - 768*x^2*log(x) - 5760*log(x) + 3264*x*log(x) + (3600*log(x) + 10)/x
________________________________________________________________________________________
sympy [A] time = 0.18, size = 29, normalized size = 1.16
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((192*x**4-1536*x**3+3264*x**2-3600)*ln(x)+64*x**4-768*x**3+3264*x**2-5760*x+3590)/x**2,x)
[Out]
-5760*log(x) + (64*x**4 - 768*x**3 + 3264*x**2 + 3600)*log(x)/x + 10/x
________________________________________________________________________________________