Optimal. Leaf size=25 \[ x \left (1+\frac {5 e^{-4-x-x^2} x}{1+\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{4+x+x^2}+5 x-5 x^2-10 x^3+\left (2 e^{4+x+x^2}+10 x-5 x^2-10 x^3\right ) \log (x)+e^{4+x+x^2} \log ^2(x)}{e^{4+x+x^2}+2 e^{4+x+x^2} \log (x)+e^{4+x+x^2} \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-4-x-x^2} \left (e^{4+x+x^2}+5 x-5 x^2-10 x^3+\left (2 e^{4+x+x^2}+10 x-5 x^2-10 x^3\right ) \log (x)+e^{4+x+x^2} \log ^2(x)\right )}{(1+\log (x))^2} \, dx\\ &=\int \left (1+\frac {5 e^{-4-x-x^2} x}{(1+\log (x))^2}-\frac {5 e^{-4-x-x^2} x^2}{(1+\log (x))^2}-\frac {10 e^{-4-x-x^2} x^3}{(1+\log (x))^2}+\frac {10 e^{-4-x-x^2} x \log (x)}{(1+\log (x))^2}-\frac {5 e^{-4-x-x^2} x^2 \log (x)}{(1+\log (x))^2}-\frac {10 e^{-4-x-x^2} x^3 \log (x)}{(1+\log (x))^2}\right ) \, dx\\ &=x+5 \int \frac {e^{-4-x-x^2} x}{(1+\log (x))^2} \, dx-5 \int \frac {e^{-4-x-x^2} x^2}{(1+\log (x))^2} \, dx-5 \int \frac {e^{-4-x-x^2} x^2 \log (x)}{(1+\log (x))^2} \, dx-10 \int \frac {e^{-4-x-x^2} x^3}{(1+\log (x))^2} \, dx+10 \int \frac {e^{-4-x-x^2} x \log (x)}{(1+\log (x))^2} \, dx-10 \int \frac {e^{-4-x-x^2} x^3 \log (x)}{(1+\log (x))^2} \, dx\\ &=x+5 \int \frac {e^{-4-x-x^2} x}{(1+\log (x))^2} \, dx-5 \int \frac {e^{-4-x-x^2} x^2}{(1+\log (x))^2} \, dx-5 \int \left (-\frac {e^{-4-x-x^2} x^2}{(1+\log (x))^2}+\frac {e^{-4-x-x^2} x^2}{1+\log (x)}\right ) \, dx-10 \int \frac {e^{-4-x-x^2} x^3}{(1+\log (x))^2} \, dx+10 \int \left (-\frac {e^{-4-x-x^2} x}{(1+\log (x))^2}+\frac {e^{-4-x-x^2} x}{1+\log (x)}\right ) \, dx-10 \int \left (-\frac {e^{-4-x-x^2} x^3}{(1+\log (x))^2}+\frac {e^{-4-x-x^2} x^3}{1+\log (x)}\right ) \, dx\\ &=x+5 \int \frac {e^{-4-x-x^2} x}{(1+\log (x))^2} \, dx-5 \int \frac {e^{-4-x-x^2} x^2}{1+\log (x)} \, dx-10 \int \frac {e^{-4-x-x^2} x}{(1+\log (x))^2} \, dx+10 \int \frac {e^{-4-x-x^2} x}{1+\log (x)} \, dx-10 \int \frac {e^{-4-x-x^2} x^3}{1+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.59, size = 27, normalized size = 1.08 \begin {gather*} \frac {x \left (1+5 e^{-4-x-x^2} x+\log (x)\right )}{1+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 47, normalized size = 1.88 \begin {gather*} \frac {x e^{\left (x^{2} + x + 4\right )} \log \relax (x) + 5 \, x^{2} + x e^{\left (x^{2} + x + 4\right )}}{e^{\left (x^{2} + x + 4\right )} \log \relax (x) + e^{\left (x^{2} + x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.85, size = 37, normalized size = 1.48 \begin {gather*} \frac {5 \, x^{2} e^{\left (-x^{2} - x\right )} + x e^{4} \log \relax (x) + x e^{4}}{e^{4} \log \relax (x) + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.00
method | result | size |
risch | \(x +\frac {5 x^{2} {\mathrm e}^{-x^{2}-x -4}}{\ln \relax (x )+1}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 41, normalized size = 1.64 \begin {gather*} \frac {{\left (5 \, x^{2} e^{\left (-x^{2}\right )} + {\left (x e^{4} \log \relax (x) + x e^{4}\right )} e^{x}\right )} e^{\left (-x\right )}}{e^{4} \log \relax (x) + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.17, size = 25, normalized size = 1.00 \begin {gather*} x+\frac {5\,x^2\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{-x^2}}{\ln \relax (x)+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 20, normalized size = 0.80 \begin {gather*} \frac {5 x^{2} e^{- x^{2} - x - 4}}{\log {\relax (x )} + 1} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________