3.33.37
Optimal. Leaf size=20
________________________________________________________________________________________
Rubi [B] time = 0.37, antiderivative size = 84, normalized size of antiderivative = 4.20,
number of steps used = 9, number of rules used = 7, integrand size = 53, = 0.132, Rules used =
{1593, 6742, 1620, 2395, 36, 29, 31}
Antiderivative was successfully verified.
[In]
Int[(-72 - 24*x - 5*x^2 - x^3 + (6 + 2*x)*Log[2] + (72 + 12*x + (-6 - x)*Log[2])*Log[6 + x])/(6*x^2 + x^3),x]
[Out]
-x + (72 - Log[64])/(6*x) + ((12 - Log[2])*Log[x])/6 - ((72 - Log[64])*Log[x])/36 - ((12 - Log[2])*Log[6 + x])
/6 - ((12 - Log[2])*Log[6 + x])/x + ((108 - Log[64])*Log[6 + x])/36
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 31
Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]
Rule 36
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
Rule 1593
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]
Rule 1620
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]
Rule 2395
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 39, normalized size = 1.95
Antiderivative was successfully verified.
[In]
Integrate[(-72 - 24*x - 5*x^2 - x^3 + (6 + 2*x)*Log[2] + (72 + 12*x + (-6 - x)*Log[2])*Log[6 + x])/(6*x^2 + x^
3),x]
[Out]
12/x - x - Log[2]/x + Log[6 + x] - (12*Log[6 + x])/x + (Log[2]*Log[6 + x])/x
________________________________________________________________________________________
fricas [A] time = 0.52, size = 23, normalized size = 1.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x-6)*log(2)+12*x+72)*log(x+6)+(2*x+6)*log(2)-x^3-5*x^2-24*x-72)/(x^3+6*x^2),x, algorithm="fricas
")
[Out]
-(x^2 - (x + log(2) - 12)*log(x + 6) + log(2) - 12)/x
________________________________________________________________________________________
giac [A] time = 0.21, size = 29, normalized size = 1.45
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x-6)*log(2)+12*x+72)*log(x+6)+(2*x+6)*log(2)-x^3-5*x^2-24*x-72)/(x^3+6*x^2),x, algorithm="giac")
[Out]
-x + (log(2) - 12)*log(x + 6)/x - (log(2) - 12)/x + log(x + 6)
________________________________________________________________________________________
maple [A] time = 0.62, size = 31, normalized size = 1.55
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
derivativedivides |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-x-6)*ln(2)+12*x+72)*ln(x+6)+(2*x+6)*ln(2)-x^3-5*x^2-24*x-72)/(x^3+6*x^2),x,method=_RETURNVERBOSE)
[Out]
((ln(2)-12)*ln(x+6)+x*ln(x+6)-x^2-ln(2)+12)/x
________________________________________________________________________________________
maxima [B] time = 0.53, size = 79, normalized size = 3.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x-6)*log(2)+12*x+72)*log(x+6)+(2*x+6)*log(2)-x^3-5*x^2-24*x-72)/(x^3+6*x^2),x, algorithm="maxima
")
[Out]
-1/6*(6/x - log(x + 6) + log(x))*log(2) - 1/3*(log(x + 6) - log(x))*log(2) - 1/6*(log(2) - 12)*log(x) - x + 1/
6*(x*(log(2) - 12) + 6*log(2) - 72)*log(x + 6)/x + 12/x + 3*log(x + 6) - 2*log(x)
________________________________________________________________________________________
mupad [B] time = 1.99, size = 22, normalized size = 1.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(24*x - log(2)*(2*x + 6) - log(x + 6)*(12*x - log(2)*(x + 6) + 72) + 5*x^2 + x^3 + 72)/(6*x^2 + x^3),x)
[Out]
log(x + 6) - x + ((log(x + 6) - 1)*(log(2) - 12))/x
________________________________________________________________________________________
sympy [A] time = 0.34, size = 24, normalized size = 1.20
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x-6)*ln(2)+12*x+72)*ln(x+6)+(2*x+6)*ln(2)-x**3-5*x**2-24*x-72)/(x**3+6*x**2),x)
[Out]
-x + log(x + 6) + (-12 + log(2))*log(x + 6)/x - (-12 + log(2))/x
________________________________________________________________________________________