3.33.37 7224x5x2x3+(6+2x)log(2)+(72+12x+(6x)log(2))log(6+x)6x2+x3dx

Optimal. Leaf size=20 3x+(12+x+log(2))(1+log(6+x))x

________________________________________________________________________________________

Rubi [B]  time = 0.37, antiderivative size = 84, normalized size of antiderivative = 4.20, number of steps used = 9, number of rules used = 7, integrand size = 53, number of rulesintegrand size = 0.132, Rules used = {1593, 6742, 1620, 2395, 36, 29, 31} x136(72log(64))log(x)+16(12log(2))log(x)+136(108log(64))log(x+6)16(12log(2))log(x+6)(12log(2))log(x+6)x+72log(64)6x

Antiderivative was successfully verified.

[In]

Int[(-72 - 24*x - 5*x^2 - x^3 + (6 + 2*x)*Log[2] + (72 + 12*x + (-6 - x)*Log[2])*Log[6 + x])/(6*x^2 + x^3),x]

[Out]

-x + (72 - Log[64])/(6*x) + ((12 - Log[2])*Log[x])/6 - ((72 - Log[64])*Log[x])/36 - ((12 - Log[2])*Log[6 + x])
/6 - ((12 - Log[2])*Log[6 + x])/x + ((108 - Log[64])*Log[6 + x])/36

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1620

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=7224x5x2x3+(6+2x)log(2)+(72+12x+(6x)log(2))log(6+x)x2(6+x)dx=(725x2x3x(24log(4))+log(64)x2(6+x)(12+log(2))log(6+x)x2)dx=(12log(2))log(6+x)x2dx+725x2x3x(24log(4))+log(64)x2(6+x)dx=(12log(2))log(6+x)x+(12log(2))1x(6+x)dx+(1+108log(64)36(6+x)+72+log(64)6x2+72+log(64)36x)dx=x+72log(64)6x136(72log(64))log(x)(12log(2))log(6+x)x+136(108log(64))log(6+x)+16(12log(2))1xdx+16(12+log(2))16+xdx=x+72log(64)6x+16(12log(2))log(x)136(72log(64))log(x)16(12log(2))log(6+x)(12log(2))log(6+x)x+136(108log(64))log(6+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 39, normalized size = 1.95 12xxlog(2)x+log(6+x)12log(6+x)x+log(2)log(6+x)x

Antiderivative was successfully verified.

[In]

Integrate[(-72 - 24*x - 5*x^2 - x^3 + (6 + 2*x)*Log[2] + (72 + 12*x + (-6 - x)*Log[2])*Log[6 + x])/(6*x^2 + x^
3),x]

[Out]

12/x - x - Log[2]/x + Log[6 + x] - (12*Log[6 + x])/x + (Log[2]*Log[6 + x])/x

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 23, normalized size = 1.15 x2(x+log(2)12)log(x+6)+log(2)12x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x-6)*log(2)+12*x+72)*log(x+6)+(2*x+6)*log(2)-x^3-5*x^2-24*x-72)/(x^3+6*x^2),x, algorithm="fricas
")

[Out]

-(x^2 - (x + log(2) - 12)*log(x + 6) + log(2) - 12)/x

________________________________________________________________________________________

giac [A]  time = 0.21, size = 29, normalized size = 1.45 x+(log(2)12)log(x+6)xlog(2)12x+log(x+6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x-6)*log(2)+12*x+72)*log(x+6)+(2*x+6)*log(2)-x^3-5*x^2-24*x-72)/(x^3+6*x^2),x, algorithm="giac")

[Out]

-x + (log(2) - 12)*log(x + 6)/x - (log(2) - 12)/x + log(x + 6)

________________________________________________________________________________________

maple [A]  time = 0.62, size = 31, normalized size = 1.55




method result size



norman (ln(2)12)ln(x+6)+xln(x+6)x2ln(2)+12x 31
risch (ln(2)12)ln(x+6)x+xln(x+6)x2ln(2)+12x 35
derivativedivides ln(2)ln(x+6)(x+6)6xln(2)xln(x+6)ln(2)62ln(x+6)(x+6)xx6+12x+3ln(x+6) 58
default ln(2)ln(x+6)(x+6)6xln(2)xln(x+6)ln(2)62ln(x+6)(x+6)xx6+12x+3ln(x+6) 58



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-x-6)*ln(2)+12*x+72)*ln(x+6)+(2*x+6)*ln(2)-x^3-5*x^2-24*x-72)/(x^3+6*x^2),x,method=_RETURNVERBOSE)

[Out]

((ln(2)-12)*ln(x+6)+x*ln(x+6)-x^2-ln(2)+12)/x

________________________________________________________________________________________

maxima [B]  time = 0.53, size = 79, normalized size = 3.95 16(6xlog(x+6)+log(x))log(2)13(log(x+6)log(x))log(2)16(log(2)12)log(x)x+(x(log(2)12)+6log(2)72)log(x+6)6x+12x+3log(x+6)2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x-6)*log(2)+12*x+72)*log(x+6)+(2*x+6)*log(2)-x^3-5*x^2-24*x-72)/(x^3+6*x^2),x, algorithm="maxima
")

[Out]

-1/6*(6/x - log(x + 6) + log(x))*log(2) - 1/3*(log(x + 6) - log(x))*log(2) - 1/6*(log(2) - 12)*log(x) - x + 1/
6*(x*(log(2) - 12) + 6*log(2) - 72)*log(x + 6)/x + 12/x + 3*log(x + 6) - 2*log(x)

________________________________________________________________________________________

mupad [B]  time = 1.99, size = 22, normalized size = 1.10 ln(x+6)x+(ln(x+6)1)(ln(2)12)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(24*x - log(2)*(2*x + 6) - log(x + 6)*(12*x - log(2)*(x + 6) + 72) + 5*x^2 + x^3 + 72)/(6*x^2 + x^3),x)

[Out]

log(x + 6) - x + ((log(x + 6) - 1)*(log(2) - 12))/x

________________________________________________________________________________________

sympy [A]  time = 0.34, size = 24, normalized size = 1.20 x+log(x+6)+(12+log(2))log(x+6)x12+log(2)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x-6)*ln(2)+12*x+72)*ln(x+6)+(2*x+6)*ln(2)-x**3-5*x**2-24*x-72)/(x**3+6*x**2),x)

[Out]

-x + log(x + 6) + (-12 + log(2))*log(x + 6)/x - (-12 + log(2))/x

________________________________________________________________________________________