3.33.38 1+2x+2x24e2x2x22log(x)xdx

Optimal. Leaf size=25 5e2x2+2x+x2+log(x)log2(x)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 8, number of rules used = 3, integrand size = 30, number of rulesintegrand size = 0.100, Rules used = {14, 2209, 2301} x2e2x2+2xlog2(x)+log(x)

Antiderivative was successfully verified.

[In]

Int[(1 + 2*x + 2*x^2 - 4*E^(2*x^2)*x^2 - 2*Log[x])/x,x]

[Out]

-E^(2*x^2) + 2*x + x^2 + Log[x] - Log[x]^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rubi steps

integral=(4e2x2x+1+2x+2x22log(x)x)dx=(4e2x2xdx)+1+2x+2x22log(x)xdx=e2x2+(1+2x+2x2x2log(x)x)dx=e2x22log(x)xdx+1+2x+2x2xdx=e2x2log2(x)+(2+1x+2x)dx=e2x2+2x+x2+log(x)log2(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 24, normalized size = 0.96 e2x2+2x+x2+log(x)log2(x)

Antiderivative was successfully verified.

[In]

Integrate[(1 + 2*x + 2*x^2 - 4*E^(2*x^2)*x^2 - 2*Log[x])/x,x]

[Out]

-E^(2*x^2) + 2*x + x^2 + Log[x] - Log[x]^2

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 23, normalized size = 0.92 x2log(x)2+2xe(2x2)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(x)-4*x^2*exp(x^2)^2+2*x^2+2*x+1)/x,x, algorithm="fricas")

[Out]

x^2 - log(x)^2 + 2*x - e^(2*x^2) + log(x)

________________________________________________________________________________________

giac [A]  time = 0.27, size = 23, normalized size = 0.92 x2log(x)2+2xe(2x2)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(x)-4*x^2*exp(x^2)^2+2*x^2+2*x+1)/x,x, algorithm="giac")

[Out]

x^2 - log(x)^2 + 2*x - e^(2*x^2) + log(x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 24, normalized size = 0.96




method result size



default 2x+ln(x)+x2e2x2ln(x)2 24
norman 2x+ln(x)+x2e2x2ln(x)2 24
risch 2x+ln(x)+x2e2x2ln(x)2 24



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*ln(x)-4*x^2*exp(x^2)^2+2*x^2+2*x+1)/x,x,method=_RETURNVERBOSE)

[Out]

2*x+ln(x)+x^2-exp(x^2)^2-ln(x)^2

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 23, normalized size = 0.92 x2log(x)2+2xe(2x2)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(x)-4*x^2*exp(x^2)^2+2*x^2+2*x+1)/x,x, algorithm="maxima")

[Out]

x^2 - log(x)^2 + 2*x - e^(2*x^2) + log(x)

________________________________________________________________________________________

mupad [B]  time = 1.98, size = 23, normalized size = 0.92 2xe2x2+ln(x)ln(x)2+x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x - 2*log(x) - 4*x^2*exp(2*x^2) + 2*x^2 + 1)/x,x)

[Out]

2*x - exp(2*x^2) + log(x) - log(x)^2 + x^2

________________________________________________________________________________________

sympy [A]  time = 0.32, size = 20, normalized size = 0.80 x2+2xe2x2log(x)2+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*ln(x)-4*x**2*exp(x**2)**2+2*x**2+2*x+1)/x,x)

[Out]

x**2 + 2*x - exp(2*x**2) - log(x)**2 + log(x)

________________________________________________________________________________________