Optimal. Leaf size=19 \[ \frac {1}{2} e^x \left (1-e^{2 x}+x+\log (2)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 29, normalized size of antiderivative = 1.53, number of steps used = 5, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 2194, 2176} \begin {gather*} -\frac {e^x}{2}-\frac {e^{3 x}}{2}+\frac {1}{2} e^x (x+2+\log (2)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (-3 e^{3 x}+e^x (2+x+\log (2))\right ) \, dx\\ &=\frac {1}{2} \int e^x (2+x+\log (2)) \, dx-\frac {3}{2} \int e^{3 x} \, dx\\ &=-\frac {e^{3 x}}{2}+\frac {1}{2} e^x (2+x+\log (2))-\frac {\int e^x \, dx}{2}\\ &=-\frac {e^x}{2}-\frac {e^{3 x}}{2}+\frac {1}{2} e^x (2+x+\log (2))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 21, normalized size = 1.11 \begin {gather*} \frac {1}{2} \left (-e^{3 x}+e^x (1+x+\log (2))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 16, normalized size = 0.84 \begin {gather*} \frac {1}{2} \, {\left (x + \log \relax (2) + 1\right )} e^{x} - \frac {1}{2} \, e^{\left (3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 16, normalized size = 0.84 \begin {gather*} \frac {1}{2} \, {\left (x + \log \relax (2) + 1\right )} e^{x} - \frac {1}{2} \, e^{\left (3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.89
method | result | size |
risch | \(-\frac {{\mathrm e}^{3 x}}{2}+\frac {\left (\ln \relax (2)+x +1\right ) {\mathrm e}^{x}}{2}\) | \(17\) |
norman | \(\left (\frac {1}{2}+\frac {\ln \relax (2)}{2}\right ) {\mathrm e}^{x}-\frac {{\mathrm e}^{3 x}}{2}+\frac {{\mathrm e}^{x} x}{2}\) | \(22\) |
default | \(\frac {{\mathrm e}^{x} x}{2}+\frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{x} \ln \relax (2)}{2}-\frac {{\mathrm e}^{3 x}}{2}\) | \(23\) |
meijerg | \(1-\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{4}-\frac {{\mathrm e}^{3 x}}{2}-\left (1+\frac {\ln \relax (2)}{2}\right ) \left (1-{\mathrm e}^{x}\right )\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 22, normalized size = 1.16 \begin {gather*} \frac {1}{2} \, {\left (x - 1\right )} e^{x} + \frac {1}{2} \, e^{x} \log \relax (2) - \frac {1}{2} \, e^{\left (3 \, x\right )} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 15, normalized size = 0.79 \begin {gather*} \frac {{\mathrm {e}}^x\,\left (x-{\mathrm {e}}^{2\,x}+\ln \relax (2)+1\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 1.05 \begin {gather*} \frac {\left (2 x + 2 \log {\relax (2 )} + 2\right ) e^{x}}{4} - \frac {e^{3 x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________