3.33.40 12(3e3x+ex(2+x+log(2)))dx

Optimal. Leaf size=19 12ex(1e2x+x+log(2))

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 29, normalized size of antiderivative = 1.53, number of steps used = 5, number of rules used = 3, integrand size = 21, number of rulesintegrand size = 0.143, Rules used = {12, 2194, 2176} ex2e3x2+12ex(x+2+log(2))

Antiderivative was successfully verified.

[In]

Int[(-3*E^(3*x) + E^x*(2 + x + Log[2]))/2,x]

[Out]

-1/2*E^x - E^(3*x)/2 + (E^x*(2 + x + Log[2]))/2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=12(3e3x+ex(2+x+log(2)))dx=12ex(2+x+log(2))dx32e3xdx=e3x2+12ex(2+x+log(2))exdx2=ex2e3x2+12ex(2+x+log(2))

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 21, normalized size = 1.11 12(e3x+ex(1+x+log(2)))

Antiderivative was successfully verified.

[In]

Integrate[(-3*E^(3*x) + E^x*(2 + x + Log[2]))/2,x]

[Out]

(-E^(3*x) + E^x*(1 + x + Log[2]))/2

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 16, normalized size = 0.84 12(x+log(2)+1)ex12e(3x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-3/2*exp(x)*exp(2*x)+1/2*(log(2)+2+x)*exp(x),x, algorithm="fricas")

[Out]

1/2*(x + log(2) + 1)*e^x - 1/2*e^(3*x)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 16, normalized size = 0.84 12(x+log(2)+1)ex12e(3x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-3/2*exp(x)*exp(2*x)+1/2*(log(2)+2+x)*exp(x),x, algorithm="giac")

[Out]

1/2*(x + log(2) + 1)*e^x - 1/2*e^(3*x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 17, normalized size = 0.89




method result size



risch e3x2+(ln(2)+x+1)ex2 17
norman (12+ln(2)2)exe3x2+exx2 22
default exx2+ex2+exln(2)2e3x2 23
meijerg 1(2x+2)ex4e3x2(1+ln(2)2)(1ex) 32



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-3/2*exp(x)*exp(2*x)+1/2*(ln(2)+2+x)*exp(x),x,method=_RETURNVERBOSE)

[Out]

-1/2*exp(3*x)+1/2*(ln(2)+x+1)*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.38, size = 22, normalized size = 1.16 12(x1)ex+12exlog(2)12e(3x)+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-3/2*exp(x)*exp(2*x)+1/2*(log(2)+2+x)*exp(x),x, algorithm="maxima")

[Out]

1/2*(x - 1)*e^x + 1/2*e^x*log(2) - 1/2*e^(3*x) + e^x

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 15, normalized size = 0.79 ex(xe2x+ln(2)+1)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*(x + log(2) + 2))/2 - (3*exp(3*x))/2,x)

[Out]

(exp(x)*(x - exp(2*x) + log(2) + 1))/2

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 20, normalized size = 1.05 (2x+2log(2)+2)ex4e3x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-3/2*exp(x)*exp(2*x)+1/2*(ln(2)+2+x)*exp(x),x)

[Out]

(2*x + 2*log(2) + 2)*exp(x)/4 - exp(3*x)/2

________________________________________________________________________________________