3.33.39
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [A] time = 0.46, antiderivative size = 62, normalized size of antiderivative = 2.00,
number of steps used = 42, number of rules used = 16, integrand size = 75, = 0.213, Rules used
= {12, 6742, 893, 2514, 2487, 29, 8, 2494, 2390, 2301, 2394, 2315, 2495, 43, 30, 2498}
Antiderivative was successfully verified.
[In]
Int[(9*x^2 - 15*x^3 + 9*x^4 + (-6*x + 13*x^2 - 9*x^3)*Log[x^3/(-1 + x)] + (-2*x + 2*x^2)*Log[x^3/(-1 + x)]^2)/
((-2 + 2*x)*Log[5]^2),x]
[Out]
(9*x^4)/(8*Log[5]^2) - (3*x^3*Log[-(x^3/(1 - x))])/(2*Log[5]^2) + (x^2*Log[-(x^3/(1 - x))]^2)/(2*Log[5]^2)
Rule 8
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 893
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && I
ntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))
Rule 2301
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]
Rule 2315
Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]
Rule 2390
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
&& EqQ[e*f - d*g, 0]
Rule 2394
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]
Rule 2487
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.), x_Symbol] :> Simp[((
a + b*x)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s)/b, x] + (Dist[(q*r*s*(b*c - a*d))/b, Int[Log[e*(f*(a + b*x)^p
*(c + d*x)^q)^r]^(s - 1)/(c + d*x), x], x] - Dist[r*s*(p + q), Int[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1
), x], x]) /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && NeQ[p + q, 0] && IGtQ[s, 0] &&
LtQ[s, 4]
Rule 2494
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]/((g_.) + (h_.)*(x_)), x_Sym
bol] :> Simp[(Log[g + h*x]*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r])/h, x] + (-Dist[(b*p*r)/h, Int[Log[g + h*x]/(a
+ b*x), x], x] - Dist[(d*q*r)/h, Int[Log[g + h*x]/(c + d*x), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, p, q,
r}, x] && NeQ[b*c - a*d, 0]
Rule 2495
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]*((g_.) + (h_.)*(x_))^(m_.),
x_Symbol] :> Simp[((g + h*x)^(m + 1)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r])/(h*(m + 1)), x] + (-Dist[(b*p*r)/(
h*(m + 1)), Int[(g + h*x)^(m + 1)/(a + b*x), x], x] - Dist[(d*q*r)/(h*(m + 1)), Int[(g + h*x)^(m + 1)/(c + d*x
), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, m, p, q, r}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1]
Rule 2498
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_)*((g_.) + (h_.)*(x_))^(
m_.), x_Symbol] :> Simp[((g + h*x)^(m + 1)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s)/(h*(m + 1)), x] + (-Dist[(b
*p*r*s)/(h*(m + 1)), Int[((g + h*x)^(m + 1)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1))/(a + b*x), x], x] -
Dist[(d*q*r*s)/(h*(m + 1)), Int[((g + h*x)^(m + 1)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1))/(c + d*x), x]
, x]) /; FreeQ[{a, b, c, d, e, f, g, h, m, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && IGtQ[s, 0] && NeQ[m, -1]
Rule 2514
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)*(RFx_), x_Symbol] :>
With[{u = ExpandIntegrand[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a,
b, c, d, e, f, p, q, r, s}, x] && RationalFunctionQ[RFx, x] && IGtQ[s, 0]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [C] time = 0.12, size = 142, normalized size = 4.58
Antiderivative was successfully verified.
[In]
Integrate[(9*x^2 - 15*x^3 + 9*x^4 + (-6*x + 13*x^2 - 9*x^3)*Log[x^3/(-1 + x)] + (-2*x + 2*x^2)*Log[x^3/(-1 + x
)]^2)/((-2 + 2*x)*Log[5]^2),x]
[Out]
((9*x^4)/4 - 3*Log[1 - x] + Log[1 - x]^2 + 3*Log[-1 + x] - Log[-1 + x]^2 + 6*Log[-1 + x]*Log[x] - 3*x^3*Log[-(
x^3/(1 - x))] + 2*Log[1 - x]*Log[-(x^3/(1 - x))] + x^2*Log[-(x^3/(1 - x))]^2 - 2*Log[-1 + x]*Log[x^3/(-1 + x)]
+ 6*PolyLog[2, 1 - x] + 6*PolyLog[2, x])/(2*Log[5]^2)
________________________________________________________________________________________
fricas [A] time = 0.52, size = 44, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2-2*x)*log(x^3/(x-1))^2+(-9*x^3+13*x^2-6*x)*log(x^3/(x-1))+9*x^4-15*x^3+9*x^2)/(2*x-2)/log(5)^
2,x, algorithm="fricas")
[Out]
1/8*(9*x^4 - 12*x^3*log(x^3/(x - 1)) + 4*x^2*log(x^3/(x - 1))^2)/log(5)^2
________________________________________________________________________________________
giac [A] time = 0.32, size = 44, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2-2*x)*log(x^3/(x-1))^2+(-9*x^3+13*x^2-6*x)*log(x^3/(x-1))+9*x^4-15*x^3+9*x^2)/(2*x-2)/log(5)^
2,x, algorithm="giac")
[Out]
1/8*(9*x^4 - 12*x^3*log(x^3/(x - 1)) + 4*x^2*log(x^3/(x - 1))^2)/log(5)^2
________________________________________________________________________________________
maple [A] time = 0.52, size = 51, normalized size = 1.65
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x^2-2*x)*ln(x^3/(x-1))^2+(-9*x^3+13*x^2-6*x)*ln(x^3/(x-1))+9*x^4-15*x^3+9*x^2)/(2*x-2)/ln(5)^2,x,metho
d=_RETURNVERBOSE)
[Out]
1/2/ln(5)^2*ln(x^3/(x-1))^2*x^2-3/2/ln(5)^2*ln(x^3/(x-1))*x^3+9/8/ln(5)^2*x^4
________________________________________________________________________________________
maxima [B] time = 0.88, size = 63, normalized size = 2.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2-2*x)*log(x^3/(x-1))^2+(-9*x^3+13*x^2-6*x)*log(x^3/(x-1))+9*x^4-15*x^3+9*x^2)/(2*x-2)/log(5)^
2,x, algorithm="maxima")
[Out]
1/8*(9*x^4 + 4*x^2*log(x - 1)^2 - 36*x^3*log(x) + 36*x^2*log(x)^2 + 12*(x^3 - 2*x^2*log(x) - 1)*log(x - 1) + 1
2*log(x - 1))/log(5)^2
________________________________________________________________________________________
mupad [B] time = 2.13, size = 27, normalized size = 0.87
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(x^3/(x - 1))^2*(2*x - 2*x^2) - 9*x^2 + 15*x^3 - 9*x^4 + log(x^3/(x - 1))*(6*x - 13*x^2 + 9*x^3))/(lo
g(5)^2*(2*x - 2)),x)
[Out]
(x^2*(3*x - 2*log(x^3/(x - 1)))^2)/(8*log(5)^2)
________________________________________________________________________________________
sympy [B] time = 0.26, size = 51, normalized size = 1.65
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x**2-2*x)*ln(x**3/(x-1))**2+(-9*x**3+13*x**2-6*x)*ln(x**3/(x-1))+9*x**4-15*x**3+9*x**2)/(2*x-2)/
ln(5)**2,x)
[Out]
9*x**4/(8*log(5)**2) - 3*x**3*log(x**3/(x - 1))/(2*log(5)**2) + x**2*log(x**3/(x - 1))**2/(2*log(5)**2)
________________________________________________________________________________________