3.33.42 1260x+143x24x364872x+2x2dx

Optimal. Leaf size=25 x2+xlog(e4(9x2)x)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 20, normalized size of antiderivative = 0.80, number of steps used = 5, number of rules used = 4, integrand size = 27, number of rulesintegrand size = 0.148, Rules used = {27, 12, 1594, 771} x2x2+16218x

Antiderivative was successfully verified.

[In]

Int[(-1260*x + 143*x^2 - 4*x^3)/(648 - 72*x + 2*x^2),x]

[Out]

162/(18 - x) - x/2 - x^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 771

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> In
t[ExpandIntegrand[(d + e*x)^m*(f + g*x)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && N
eQ[b^2 - 4*a*c, 0] && IntegerQ[p] && (GtQ[p, 0] || (EqQ[a, 0] && IntegerQ[m]))

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rubi steps

integral=1260x+143x24x32(18+x)2dx=121260x+143x24x3(18+x)2dx=12x(1260+143x4x2)(18+x)2dx=12(1+324(18+x)24x)dx=16218xx2x2

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 21, normalized size = 0.84 12(66632418+xx2x2)

Antiderivative was successfully verified.

[In]

Integrate[(-1260*x + 143*x^2 - 4*x^3)/(648 - 72*x + 2*x^2),x]

[Out]

(666 - 324/(-18 + x) - x - 2*x^2)/2

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 22, normalized size = 0.88 2x335x218x+3242(x18)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^3+143*x^2-1260*x)/(2*x^2-72*x+648),x, algorithm="fricas")

[Out]

-1/2*(2*x^3 - 35*x^2 - 18*x + 324)/(x - 18)

________________________________________________________________________________________

giac [A]  time = 0.28, size = 16, normalized size = 0.64 x212x162x18

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^3+143*x^2-1260*x)/(2*x^2-72*x+648),x, algorithm="giac")

[Out]

-x^2 - 1/2*x - 162/(x - 18)

________________________________________________________________________________________

maple [A]  time = 0.61, size = 16, normalized size = 0.64




method result size



gosper x2(2x35)2(18+x) 16
default x2x216218+x 17
risch x2x216218+x 17
norman 352x2x318+x 18
meijerg 9x(1162x213x+12)1x18+143x(x6+6)6(1x18)35x1x18 47



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-4*x^3+143*x^2-1260*x)/(2*x^2-72*x+648),x,method=_RETURNVERBOSE)

[Out]

-1/2*x^2*(2*x-35)/(-18+x)

________________________________________________________________________________________

maxima [A]  time = 0.39, size = 16, normalized size = 0.64 x212x162x18

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x^3+143*x^2-1260*x)/(2*x^2-72*x+648),x, algorithm="maxima")

[Out]

-x^2 - 1/2*x - 162/(x - 18)

________________________________________________________________________________________

mupad [B]  time = 1.85, size = 16, normalized size = 0.64 x2162x18x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(1260*x - 143*x^2 + 4*x^3)/(2*x^2 - 72*x + 648),x)

[Out]

- x/2 - 162/(x - 18) - x^2

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 12, normalized size = 0.48 x2x2162x18

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-4*x**3+143*x**2-1260*x)/(2*x**2-72*x+648),x)

[Out]

-x**2 - x/2 - 162/(x - 18)

________________________________________________________________________________________