3.33.43 x22x3+6e3xx3+e5x(2+5x)+ex(2x4+x5)x3dx

Optimal. Leaf size=26 e252x+ex(e2xx+x)2+log(x)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 29, normalized size of antiderivative = 1.12, number of steps used = 13, number of rules used = 6, integrand size = 47, number of rulesintegrand size = 0.128, Rules used = {14, 2194, 43, 2196, 2176, 2197} exx2+e5xx22x+2e3x+log(x)

Antiderivative was successfully verified.

[In]

Int[(x^2 - 2*x^3 + 6*E^(3*x)*x^3 + E^(5*x)*(-2 + 5*x) + E^x*(2*x^4 + x^5))/x^3,x]

[Out]

2*E^(3*x) + E^(5*x)/x^2 - 2*x + E^x*x^2 + Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rule 2197

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[(g*u^(m + 1)*F^(c*v))/(b*c
*e*Log[F]), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]

Rubi steps

integral=(6e3x+12xx+exx(2+x)+e5x(2+5x)x3)dx=6e3xdx+12xxdx+exx(2+x)dx+e5x(2+5x)x3dx=2e3x+e5xx2+(2+1x)dx+(2exx+exx2)dx=2e3x+e5xx22x+log(x)+2exxdx+exx2dx=2e3x+e5xx22x+2exx+exx2+log(x)2exdx2exxdx=2ex+2e3x+e5xx22x+exx2+log(x)+2exdx=2e3x+e5xx22x+exx2+log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 29, normalized size = 1.12 2e3x+e5xx22x+exx2+log(x)

Antiderivative was successfully verified.

[In]

Integrate[(x^2 - 2*x^3 + 6*E^(3*x)*x^3 + E^(5*x)*(-2 + 5*x) + E^x*(2*x^4 + x^5))/x^3,x]

[Out]

2*E^(3*x) + E^(5*x)/x^2 - 2*x + E^x*x^2 + Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 35, normalized size = 1.35 x4ex2x3+2x2e(3x)+x2log(x)+e(5x)x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x-2)*exp(x)^5+6*x^3*exp(x)^3+(x^5+2*x^4)*exp(x)-2*x^3+x^2)/x^3,x, algorithm="fricas")

[Out]

(x^4*e^x - 2*x^3 + 2*x^2*e^(3*x) + x^2*log(x) + e^(5*x))/x^2

________________________________________________________________________________________

giac [A]  time = 0.27, size = 35, normalized size = 1.35 x4ex2x3+2x2e(3x)+x2log(x)+e(5x)x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x-2)*exp(x)^5+6*x^3*exp(x)^3+(x^5+2*x^4)*exp(x)-2*x^3+x^2)/x^3,x, algorithm="giac")

[Out]

(x^4*e^x - 2*x^3 + 2*x^2*e^(3*x) + x^2*log(x) + e^(5*x))/x^2

________________________________________________________________________________________

maple [A]  time = 0.06, size = 27, normalized size = 1.04




method result size



default ln(x)2x+exx2+2e3x+e5xx2 27
risch ln(x)2x+exx2+2e3x+e5xx2 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((5*x-2)*exp(x)^5+6*x^3*exp(x)^3+(x^5+2*x^4)*exp(x)-2*x^3+x^2)/x^3,x,method=_RETURNVERBOSE)

[Out]

ln(x)-2*x+exp(x)*x^2+2*exp(x)^3+1/x^2*exp(x)^5

________________________________________________________________________________________

maxima [C]  time = 0.47, size = 44, normalized size = 1.69 (x22x+2)ex+2(x1)ex2x+2e(3x)+25Γ(1,5x)+50Γ(2,5x)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x-2)*exp(x)^5+6*x^3*exp(x)^3+(x^5+2*x^4)*exp(x)-2*x^3+x^2)/x^3,x, algorithm="maxima")

[Out]

(x^2 - 2*x + 2)*e^x + 2*(x - 1)*e^x - 2*x + 2*e^(3*x) + 25*gamma(-1, -5*x) + 50*gamma(-2, -5*x) + log(x)

________________________________________________________________________________________

mupad [B]  time = 1.88, size = 32, normalized size = 1.23 ln(x)+e5x+x4ex+2x2e3x2x3x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((6*x^3*exp(3*x) + exp(x)*(2*x^4 + x^5) + exp(5*x)*(5*x - 2) + x^2 - 2*x^3)/x^3,x)

[Out]

log(x) + (exp(5*x) + x^4*exp(x) + 2*x^2*exp(3*x) - 2*x^3)/x^2

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 31, normalized size = 1.19 2x+log(x)+x4ex+2x2e3x+e5xx2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x-2)*exp(x)**5+6*x**3*exp(x)**3+(x**5+2*x**4)*exp(x)-2*x**3+x**2)/x**3,x)

[Out]

-2*x + log(x) + (x**4*exp(x) + 2*x**2*exp(3*x) + exp(5*x))/x**2

________________________________________________________________________________________