3.33.43
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 29, normalized size of antiderivative = 1.12,
number of steps used = 13, number of rules used = 6, integrand size = 47, = 0.128, Rules used
= {14, 2194, 43, 2196, 2176, 2197}
Antiderivative was successfully verified.
[In]
Int[(x^2 - 2*x^3 + 6*E^(3*x)*x^3 + E^(5*x)*(-2 + 5*x) + E^x*(2*x^4 + x^5))/x^3,x]
[Out]
2*E^(3*x) + E^(5*x)/x^2 - 2*x + E^x*x^2 + Log[x]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2196
Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] && !$UseGamma === True
Rule 2197
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[(g*u^(m + 1)*F^(c*v))/(b*c
*e*Log[F]), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 1.12
Antiderivative was successfully verified.
[In]
Integrate[(x^2 - 2*x^3 + 6*E^(3*x)*x^3 + E^(5*x)*(-2 + 5*x) + E^x*(2*x^4 + x^5))/x^3,x]
[Out]
2*E^(3*x) + E^(5*x)/x^2 - 2*x + E^x*x^2 + Log[x]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 35, normalized size = 1.35
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*x-2)*exp(x)^5+6*x^3*exp(x)^3+(x^5+2*x^4)*exp(x)-2*x^3+x^2)/x^3,x, algorithm="fricas")
[Out]
(x^4*e^x - 2*x^3 + 2*x^2*e^(3*x) + x^2*log(x) + e^(5*x))/x^2
________________________________________________________________________________________
giac [A] time = 0.27, size = 35, normalized size = 1.35
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*x-2)*exp(x)^5+6*x^3*exp(x)^3+(x^5+2*x^4)*exp(x)-2*x^3+x^2)/x^3,x, algorithm="giac")
[Out]
(x^4*e^x - 2*x^3 + 2*x^2*e^(3*x) + x^2*log(x) + e^(5*x))/x^2
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.04
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((5*x-2)*exp(x)^5+6*x^3*exp(x)^3+(x^5+2*x^4)*exp(x)-2*x^3+x^2)/x^3,x,method=_RETURNVERBOSE)
[Out]
ln(x)-2*x+exp(x)*x^2+2*exp(x)^3+1/x^2*exp(x)^5
________________________________________________________________________________________
maxima [C] time = 0.47, size = 44, normalized size = 1.69
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*x-2)*exp(x)^5+6*x^3*exp(x)^3+(x^5+2*x^4)*exp(x)-2*x^3+x^2)/x^3,x, algorithm="maxima")
[Out]
(x^2 - 2*x + 2)*e^x + 2*(x - 1)*e^x - 2*x + 2*e^(3*x) + 25*gamma(-1, -5*x) + 50*gamma(-2, -5*x) + log(x)
________________________________________________________________________________________
mupad [B] time = 1.88, size = 32, normalized size = 1.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((6*x^3*exp(3*x) + exp(x)*(2*x^4 + x^5) + exp(5*x)*(5*x - 2) + x^2 - 2*x^3)/x^3,x)
[Out]
log(x) + (exp(5*x) + x^4*exp(x) + 2*x^2*exp(3*x) - 2*x^3)/x^2
________________________________________________________________________________________
sympy [A] time = 0.16, size = 31, normalized size = 1.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*x-2)*exp(x)**5+6*x**3*exp(x)**3+(x**5+2*x**4)*exp(x)-2*x**3+x**2)/x**3,x)
[Out]
-2*x + log(x) + (x**4*exp(x) + 2*x**2*exp(3*x) + exp(5*x))/x**2
________________________________________________________________________________________