3.33.47 136x3x2+ex(1818x3x2)36+12x+x2+e(36+12x+x2)dx

Optimal. Leaf size=26 4x(1x+3(ex+x))(1+e)(6+x)

________________________________________________________________________________________

Rubi [A]  time = 0.29, antiderivative size = 46, normalized size of antiderivative = 1.77, number of steps used = 13, number of rules used = 9, integrand size = 45, number of rulesintegrand size = 0.200, Rules used = {6741, 27, 12, 6742, 683, 2199, 2194, 2177, 2178} 3x1+e+18ex(1+e)(x+6)109(1+e)(x+6)3ex1+e

Antiderivative was successfully verified.

[In]

Int[(1 - 36*x - 3*x^2 + E^x*(-18 - 18*x - 3*x^2))/(36 + 12*x + x^2 + E*(36 + 12*x + x^2)),x]

[Out]

(-3*E^x)/(1 + E) - (3*x)/(1 + E) - 109/((1 + E)*(6 + x)) + (18*E^x)/((1 + E)*(6 + x))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 683

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
 e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && IGtQ[p, 0] &&  !(EqQ[m, 3] && NeQ[p, 1])

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=136x3x2+ex(1818x3x2)36(1+e)+12(1+e)x+(1+e)x2dx=136x3x2+ex(1818x3x2)(1+e)(6+x)2dx=136x3x2+ex(1818x3x2)(6+x)2dx1+e=(136x3x2(6+x)23ex(6+6x+x2)(6+x)2)dx1+e=136x3x2(6+x)2dx1+e3ex(6+6x+x2)(6+x)2dx1+e=(3+109(6+x)2)dx1+e3(ex+6ex(6+x)26ex6+x)dx1+e=3x1+e109(1+e)(6+x)3exdx1+e18ex(6+x)2dx1+e+18ex6+xdx1+e=3ex1+e3x1+e109(1+e)(6+x)+18ex(1+e)(6+x)+18Ei(6+x)e6(1+e)18ex6+xdx1+e=3ex1+e3x1+e109(1+e)(6+x)+18ex(1+e)(6+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 27, normalized size = 1.04 109+3(6+ex)x+3x2(1+e)(6+x)

Antiderivative was successfully verified.

[In]

Integrate[(1 - 36*x - 3*x^2 + E^x*(-18 - 18*x - 3*x^2))/(36 + 12*x + x^2 + E*(36 + 12*x + x^2)),x]

[Out]

-((109 + 3*(6 + E^x)*x + 3*x^2)/((1 + E)*(6 + x)))

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 28, normalized size = 1.08 3x2+3xex+18x+109(x+6)e+x+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^2-18*x-18)*exp(x)-3*x^2-36*x+1)/((x^2+12*x+36)*exp(1)+x^2+12*x+36),x, algorithm="fricas")

[Out]

-(3*x^2 + 3*x*e^x + 18*x + 109)/((x + 6)*e + x + 6)

________________________________________________________________________________________

giac [A]  time = 0.31, size = 30, normalized size = 1.15 3x2+3xex+18x+109xe+x+6e+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^2-18*x-18)*exp(x)-3*x^2-36*x+1)/((x^2+12*x+36)*exp(1)+x^2+12*x+36),x, algorithm="giac")

[Out]

-(3*x^2 + 3*x*e^x + 18*x + 109)/(x*e + x + 6*e + 6)

________________________________________________________________________________________

maple [A]  time = 0.59, size = 38, normalized size = 1.46




method result size



norman 3x21+e3xex1+e11+ex+6 38
risch 3x1+e109e(1+e)(xe+6e+x+6)109(1+e)(xe+6e+x+6)3xex(1+e)(x+6) 71
default 109(1+e)(x+6)3x1+e18(exx+6e6\expIntegralEi(1,x6))1+e18e6\expIntegralEi(1,x6)1+e3ex1+e 80



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-3*x^2-18*x-18)*exp(x)-3*x^2-36*x+1)/((x^2+12*x+36)*exp(1)+x^2+12*x+36),x,method=_RETURNVERBOSE)

[Out]

(-3/(1+exp(1))*x^2-3*x/(1+exp(1))*exp(x)-1/(1+exp(1)))/(x+6)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 3xexx(e+1)+6e+63xe+1+18e(6)E2(x6)(x+6)(e+1)109x(e+1)+6e+6+18exx2(e+1)+12x(e+1)+36e+36dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x^2-18*x-18)*exp(x)-3*x^2-36*x+1)/((x^2+12*x+36)*exp(1)+x^2+12*x+36),x, algorithm="maxima")

[Out]

-3*x*e^x/(x*(e + 1) + 6*e + 6) - 3*x/(e + 1) + 18*e^(-6)*exp_integral_e(2, -x - 6)/((x + 6)*(e + 1)) - 109/(x*
(e + 1) + 6*e + 6) + 18*integrate(e^x/(x^2*(e + 1) + 12*x*(e + 1) + 36*e + 36), x)

________________________________________________________________________________________

mupad [B]  time = 0.27, size = 23, normalized size = 0.88 x(18x+18ex1)6(e+1)(x+6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(36*x + exp(x)*(18*x + 3*x^2 + 18) + 3*x^2 - 1)/(12*x + exp(1)*(12*x + x^2 + 36) + x^2 + 36),x)

[Out]

-(x*(18*x + 18*exp(x) - 1))/(6*(exp(1) + 1)*(x + 6))

________________________________________________________________________________________

sympy [A]  time = 0.29, size = 44, normalized size = 1.69 3x1+e3xexx+ex+6+6e109x(1+e)+6+6e

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x**2-18*x-18)*exp(x)-3*x**2-36*x+1)/((x**2+12*x+36)*exp(1)+x**2+12*x+36),x)

[Out]

-3*x/(1 + E) - 3*x*exp(x)/(x + E*x + 6 + 6*E) - 109/(x*(1 + E) + 6 + 6*E)

________________________________________________________________________________________