3.33.47
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 46, normalized size of antiderivative = 1.77,
number of steps used = 13, number of rules used = 9, integrand size = 45, = 0.200, Rules used
= {6741, 27, 12, 6742, 683, 2199, 2194, 2177, 2178}
Antiderivative was successfully verified.
[In]
Int[(1 - 36*x - 3*x^2 + E^x*(-18 - 18*x - 3*x^2))/(36 + 12*x + x^2 + E*(36 + 12*x + x^2)),x]
[Out]
(-3*E^x)/(1 + E) - (3*x)/(1 + E) - 109/((1 + E)*(6 + x)) + (18*E^x)/((1 + E)*(6 + x))
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 27
Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
Rule 683
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && IGtQ[p, 0] && !(EqQ[m, 3] && NeQ[p, 1])
Rule 2177
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !$UseGamma ===
True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 27, normalized size = 1.04
Antiderivative was successfully verified.
[In]
Integrate[(1 - 36*x - 3*x^2 + E^x*(-18 - 18*x - 3*x^2))/(36 + 12*x + x^2 + E*(36 + 12*x + x^2)),x]
[Out]
-((109 + 3*(6 + E^x)*x + 3*x^2)/((1 + E)*(6 + x)))
________________________________________________________________________________________
fricas [A] time = 0.61, size = 28, normalized size = 1.08
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^2-18*x-18)*exp(x)-3*x^2-36*x+1)/((x^2+12*x+36)*exp(1)+x^2+12*x+36),x, algorithm="fricas")
[Out]
-(3*x^2 + 3*x*e^x + 18*x + 109)/((x + 6)*e + x + 6)
________________________________________________________________________________________
giac [A] time = 0.31, size = 30, normalized size = 1.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^2-18*x-18)*exp(x)-3*x^2-36*x+1)/((x^2+12*x+36)*exp(1)+x^2+12*x+36),x, algorithm="giac")
[Out]
-(3*x^2 + 3*x*e^x + 18*x + 109)/(x*e + x + 6*e + 6)
________________________________________________________________________________________
maple [A] time = 0.59, size = 38, normalized size = 1.46
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-3*x^2-18*x-18)*exp(x)-3*x^2-36*x+1)/((x^2+12*x+36)*exp(1)+x^2+12*x+36),x,method=_RETURNVERBOSE)
[Out]
(-3/(1+exp(1))*x^2-3*x/(1+exp(1))*exp(x)-1/(1+exp(1)))/(x+6)
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x^2-18*x-18)*exp(x)-3*x^2-36*x+1)/((x^2+12*x+36)*exp(1)+x^2+12*x+36),x, algorithm="maxima")
[Out]
-3*x*e^x/(x*(e + 1) + 6*e + 6) - 3*x/(e + 1) + 18*e^(-6)*exp_integral_e(2, -x - 6)/((x + 6)*(e + 1)) - 109/(x*
(e + 1) + 6*e + 6) + 18*integrate(e^x/(x^2*(e + 1) + 12*x*(e + 1) + 36*e + 36), x)
________________________________________________________________________________________
mupad [B] time = 0.27, size = 23, normalized size = 0.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(36*x + exp(x)*(18*x + 3*x^2 + 18) + 3*x^2 - 1)/(12*x + exp(1)*(12*x + x^2 + 36) + x^2 + 36),x)
[Out]
-(x*(18*x + 18*exp(x) - 1))/(6*(exp(1) + 1)*(x + 6))
________________________________________________________________________________________
sympy [A] time = 0.29, size = 44, normalized size = 1.69
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*x**2-18*x-18)*exp(x)-3*x**2-36*x+1)/((x**2+12*x+36)*exp(1)+x**2+12*x+36),x)
[Out]
-3*x/(1 + E) - 3*x*exp(x)/(x + E*x + 6 + 6*E) - 109/(x*(1 + E) + 6 + 6*E)
________________________________________________________________________________________