Optimal. Leaf size=32 \[ e^{4+\frac {5 x^2 \left (1+e^x+2 x\right ) \log \left (e^{-x} x\right )}{3-x}} \]
________________________________________________________________________________________
Rubi [F] time = 24.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-12+4 x+\left (-5 x^2-5 e^x x^2-10 x^3\right ) \log \left (e^{-x} x\right )}{-3+x}\right ) \left (15 x+10 x^2-35 x^3+10 x^4+e^x \left (15 x-20 x^2+5 x^3\right )+\left (30 x+85 x^2-20 x^3+e^x \left (30 x+10 x^2-5 x^3\right )\right ) \log \left (e^{-x} x\right )\right )}{9-6 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-12+4 x+\left (-5 x^2-5 e^x x^2-10 x^3\right ) \log \left (e^{-x} x\right )}{-3+x}\right ) \left (15 x+10 x^2-35 x^3+10 x^4+e^x \left (15 x-20 x^2+5 x^3\right )+\left (30 x+85 x^2-20 x^3+e^x \left (30 x+10 x^2-5 x^3\right )\right ) \log \left (e^{-x} x\right )\right )}{(-3+x)^2} \, dx\\ &=\int \frac {5 e^4 x \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \left (\left (1+e^x+2 x\right ) \left (3-4 x+x^2\right )+\left (6+17 x-4 x^2+e^x \left (6+2 x-x^2\right )\right ) \log \left (e^{-x} x\right )\right )}{(3-x)^2} \, dx\\ &=\left (5 e^4\right ) \int \frac {x \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \left (\left (1+e^x+2 x\right ) \left (3-4 x+x^2\right )+\left (6+17 x-4 x^2+e^x \left (6+2 x-x^2\right )\right ) \log \left (e^{-x} x\right )\right )}{(3-x)^2} \, dx\\ &=\left (5 e^4\right ) \int \left (\frac {3 x \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}}}{(-3+x)^2}-\frac {4 x^2 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}}}{(-3+x)^2}+\frac {2 (-1+x) x^2 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}}}{-3+x}+\frac {x^3 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}}}{(-3+x)^2}+\frac {6 x \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \log \left (e^{-x} x\right )}{(-3+x)^2}+\frac {17 x^2 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \log \left (e^{-x} x\right )}{(-3+x)^2}-\frac {4 x^3 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \log \left (e^{-x} x\right )}{(-3+x)^2}-\frac {e^x x \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \left (-3+4 x-x^2-6 \log \left (e^{-x} x\right )-2 x \log \left (e^{-x} x\right )+x^2 \log \left (e^{-x} x\right )\right )}{(-3+x)^2}\right ) \, dx\\ &=\left (5 e^4\right ) \int \frac {x^3 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}}}{(-3+x)^2} \, dx-\left (5 e^4\right ) \int \frac {e^x x \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \left (-3+4 x-x^2-6 \log \left (e^{-x} x\right )-2 x \log \left (e^{-x} x\right )+x^2 \log \left (e^{-x} x\right )\right )}{(-3+x)^2} \, dx+\left (10 e^4\right ) \int \frac {(-1+x) x^2 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}}}{-3+x} \, dx+\left (15 e^4\right ) \int \frac {x \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}}}{(-3+x)^2} \, dx-\left (20 e^4\right ) \int \frac {x^2 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}}}{(-3+x)^2} \, dx-\left (20 e^4\right ) \int \frac {x^3 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \log \left (e^{-x} x\right )}{(-3+x)^2} \, dx+\left (30 e^4\right ) \int \frac {x \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \log \left (e^{-x} x\right )}{(-3+x)^2} \, dx+\left (85 e^4\right ) \int \frac {x^2 \left (e^{-x} x\right )^{-\frac {5 x^2 \left (1+e^x+2 x\right )}{-3+x}} \log \left (e^{-x} x\right )}{(-3+x)^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.50, size = 98, normalized size = 3.06 \begin {gather*} e^{4+\frac {5 x \left (21 (-3+x)+\left (-21+x+e^x x+2 x^2\right ) \log (x)-\left (-21+x+e^x x+2 x^2\right ) \log \left (e^{-x} x\right )\right )}{-3+x}} x^{-\frac {5 \left (-63+\left (1+e^x\right ) x^2+2 x^3\right )}{-3+x}} \left (e^{-x} x\right )^{-\frac {315}{-3+x}} \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 37, normalized size = 1.16 \begin {gather*} e^{\left (-\frac {5 \, {\left (2 \, x^{3} + x^{2} e^{x} + x^{2}\right )} \log \left (x e^{\left (-x\right )}\right ) - 4 \, x + 12}{x - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.71, size = 70, normalized size = 2.19 \begin {gather*} e^{\left (-\frac {10 \, x^{3} \log \left (x e^{\left (-x\right )}\right )}{x - 3} - \frac {5 \, x^{2} e^{x} \log \left (x e^{\left (-x\right )}\right )}{x - 3} - \frac {5 \, x^{2} \log \left (x e^{\left (-x\right )}\right )}{x - 3} + \frac {4 \, x}{x - 3} - \frac {12}{x - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.64, size = 359, normalized size = 11.22
method | result | size |
risch | \({\mathrm e}^{-\frac {-10 i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3} x^{3}-5 i \pi \,{\mathrm e}^{x} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3} x^{2}-5 i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3} x^{2}+10 i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i x \right ) x^{3}+5 i \pi \,{\mathrm e}^{x} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i x \right ) x^{2}-5 i \pi \,{\mathrm e}^{x} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) x^{2}+5 i \pi \,{\mathrm e}^{x} \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) x^{2}-10 i \pi \,\mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) x^{3}+10 i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) x^{3}-5 i \pi \,\mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) x^{2}+5 i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i x \right ) x^{2}+5 i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) x^{2}+10 x^{2} {\mathrm e}^{x} \ln \relax (x )+20 x^{3} \ln \relax (x )-10 \,{\mathrm e}^{x} \ln \left ({\mathrm e}^{x}\right ) x^{2}-20 \ln \left ({\mathrm e}^{x}\right ) x^{3}+10 x^{2} \ln \relax (x )-10 \ln \left ({\mathrm e}^{x}\right ) x^{2}-8 x +24}{2 \left (x -3\right )}}\) | \(359\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 79, normalized size = 2.47 \begin {gather*} \frac {{\mathrm {e}}^{\frac {4\,x}{x-3}}\,{\mathrm {e}}^{\frac {5\,x^3\,{\mathrm {e}}^x}{x-3}}\,{\mathrm {e}}^{\frac {5\,x^3}{x-3}}\,{\mathrm {e}}^{\frac {10\,x^4}{x-3}}\,{\mathrm {e}}^{-\frac {12}{x-3}}}{x^{\frac {5\,\left (x^2\,{\mathrm {e}}^x+x^2+2\,x^3\right )}{x-3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________